library(rpact)
packageVersion("rpact") # version should be version 3.0 or laterHow to use R Generics with rpact
as.data.frame() or summary().
Creating examples of selected rpact result objects
First, load the rpact package
[1] '4.2.1'
In the following, we define different (typical) examples of rpact applications. The results are rpact objects which refer to examples for design specifications, power and sample size calculations, simulation results and the results of a data analysis with defined design and datasets.
designGroupSequential <- getDesignGroupSequential(
alpha = 0.05,
kMax = 4,
sided = 1,
typeOfDesign = "WT",
deltaWT = 0.1
)
designFisher <- getDesignFisher(
kMax = 4,
alpha = 0.025,
informationRates = c(0.2, 0.5, 0.8, 1),
alpha0Vec = rep(0.4, 3)
)
designCharacteristics <- getDesignCharacteristics(
designGroupSequential
)
powerAndASN <- getPowerAndAverageSampleNumber(
designGroupSequential,
theta = 0.5,
nMax = 40
)
sampleSizeResults <- getSampleSizeMeans(
designGroupSequential
)
powerResults <- getPowerMeans(
designGroupSequential,
maxNumberOfSubjects = 100
)
designSet <- getDesignSet(
design = designGroupSequential,
deltaWT = c(0.3, 0.4)
)
dataset <- getDataset(
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)
)
analysisResults <- getAnalysisResults(
designGroupSequential,
dataset
)How to use R generic functions with rpact objects
This section describes how the defined objects can be used and displayed. It is important to understand this is the way how R objects can typically be handled. Particularly, we tried to make the summary() output (except for the technical developer summaries) “ready to use”, e.g., for a design report.
Get field names of the object
designGroupSequential |> names() [1] "kMax" "alpha" "stages"
[4] "informationRates" "userAlphaSpending" "criticalValues"
[7] "stageLevels" "alphaSpent" "bindingFutility"
[10] "directionUpper" "tolerance" "typeOfDesign"
[13] "beta" "deltaWT" "deltaPT1"
[16] "deltaPT0" "futilityBounds" "gammaA"
[19] "gammaB" "optimizationCriterion" "sided"
[22] "betaSpent" "typeBetaSpending" "userBetaSpending"
[25] "efficacyStops" "futilityStops" "power"
[28] "twoSidedPower" "constantBoundsHP" "betaAdjustment"
[31] "delayedInformation" "decisionCriticalValues" "reversalProbabilities"
Access data of a field
designGroupSequential$criticalValues[1] 3.069028 2.325888 1.977663 1.762694
designGroupSequential[["criticalValues"]][1] 3.069028 2.325888 1.977663 1.762694
Print object
designGroupSequential |> print()Design parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Information rates: 0.250, 0.500, 0.750, 1.000
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.1
Derived from user defined parameters
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.001074, 0.010527, 0.028206, 0.050000
- Critical values: 3.069, 2.326, 1.978, 1.763
- Stage levels (one-sided): 0.001074, 0.010012, 0.023983, 0.038976
designSet |> print()Trial design set with 3 designs
Design parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Information rates: 0.250, 0.500, 0.750, 1.000
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.1
Derived from user defined parameters
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.001074, 0.010527, 0.028206, 0.050000
- Critical values: 3.069, 2.326, 1.978, 1.763
- Stage levels (one-sided): 0.001074, 0.010012, 0.023983, 0.038976
Design parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.3
Derived from user defined parameters
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Information rates: 0.250, 0.500, 0.750, 1.000
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.006916, 0.020169, 0.035108, 0.050000
- Critical values: 2.462, 2.143, 1.976, 1.866
- Stage levels (one-sided): 0.006916, 0.016059, 0.024076, 0.031052
Design parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.4
Derived from user defined parameters
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Information rates: 0.250, 0.500, 0.750, 1.000
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.01250, 0.02626, 0.03879, 0.05000
- Critical values: 2.241, 2.091, 2.008, 1.951
- Stage levels (one-sided): 0.01250, 0.01826, 0.02232, 0.02552
sampleSizeResults |> print()Design plan parameters and output for means
Design parameters
- Information rates: 0.250, 0.500, 0.750, 1.000
- Critical values: 3.069, 2.326, 1.978, 1.763
- Futility bounds (non-binding): -Inf, -Inf, -Inf
- Cumulative alpha spending: 0.001074, 0.010527, 0.028206, 0.050000
- Local one-sided significance levels: 0.001074, 0.010012, 0.023983, 0.038976
- Significance level: 0.0500
- Type II error rate: 0.2000
- Test: one-sided
Default parameters
- Mean ratio: FALSE
- Theta H0: 0
- Normal approximation: FALSE
- Alternatives: 0.2, 0.4, 0.6, 0.8, 1.0
- Standard deviation: 1
- Treatment groups: 2
- Planned allocation ratio: 1
Sample size and output
- Maximum number of subjects: 649.6, 163.5, 73.5, 42, 27.5
- Maximum number of subjects (1): 324.8, 81.7, 36.7, 21, 13.7
- Maximum number of subjects (2): 324.8, 81.7, 36.7, 21, 13.7
- Number of subjects [1]: 162.4, 40.9, 18.4, 10.5, 6.9
- Number of subjects [2]: 324.8, 81.7, 36.7, 21, 13.7
- Number of subjects [3]: 487.2, 122.6, 55.1, 31.5, 20.6
- Number of subjects [4]: 649.6, 163.5, 73.5, 42, 27.5
- Reject per stage [1]: 0.03625
- Reject per stage [2]: 0.26640
- Reject per stage [3]: 0.30072
- Reject per stage [4]: 0.19663
- Early stop: 0.6034
- Expected number of subjects under H0: 643.2, 161.9, 72.8, 41.6, 27.2
- Expected number of subjects under H0/H1: 602.5, 151.6, 68.2, 39, 25.5
- Expected number of subjects under H1: 496.6, 125, 56.2, 32.1, 21
- Critical values (treatment effect scale) [1]: 0.490, 1.029, 1.697, 2.678, 4.519
- Critical values (treatment effect scale) [2]: 0.259, 0.525, 0.804, 1.108, 1.452
- Critical values (treatment effect scale) [3]: 0.180, 0.361, 0.545, 0.735, 0.933
- Critical values (treatment effect scale) [4]: 0.139, 0.277, 0.417, 0.558, 0.701
Legend
- (i): values of treatment arm i
- [k]: values at stage k
dataset |> print()Dataset of means
- Stages: 1, 1, 2, 2, 3, 3, 4, 4
- Treatment groups: 1, 2, 1, 2, 1, 2, 1, 2
- Sample sizes: 22, 22, 11, 13, 22, 22, 11, 13
- Means: 1.0, 1.4, 1.1, 1.5, 1.0, 3.0, 1.0, 2.5
- Standard deviations: 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 1.3, 1.3
Calculated data
- Cumulative sample sizes: 22, 22, 33, 35, 55, 57, 66, 70
- Cumulative means: 1.000, 1.400, 1.033, 1.437, 1.020, 2.040, 1.017, 2.126
- Cumulative standard deviations: 1.000, 1.000, 1.381, 1.425, 1.639, 1.823, 1.579, 1.739
Print object (kable version)
designGroupSequentialDesign parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Information rates: 0.250, 0.500, 0.750, 1.000
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.1
Derived from user defined parameters
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.001074, 0.010527, 0.028206, 0.050000
- Critical values: 3.069, 2.326, 1.978, 1.763
- Stage levels (one-sided): 0.001074, 0.010012, 0.023983, 0.038976
designSetTrial design set with 3 designs
Design parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Information rates: 0.250, 0.500, 0.750, 1.000
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.1
Derived from user defined parameters
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.001074, 0.010527, 0.028206, 0.050000
- Critical values: 3.069, 2.326, 1.978, 1.763
- Stage levels (one-sided): 0.001074, 0.010012, 0.023983, 0.038976
Design parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.3
Derived from user defined parameters
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Information rates: 0.250, 0.500, 0.750, 1.000
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.006916, 0.020169, 0.035108, 0.050000
- Critical values: 2.462, 2.143, 1.976, 1.866
- Stage levels (one-sided): 0.006916, 0.016059, 0.024076, 0.031052
Design parameters and output of group sequential design
User defined parameters
- Type of design: Wang & Tsiatis Delta class
- Significance level: 0.0500
- Delta for Wang & Tsiatis Delta class: 0.4
Derived from user defined parameters
- Maximum number of stages: 4
- Stages: 1, 2, 3, 4
- Futility bounds (non-binding): -Inf, -Inf, -Inf
Default parameters
- Information rates: 0.250, 0.500, 0.750, 1.000
- Type II error rate: 0.2000
- Binding futility: FALSE
- Test: one-sided
- Tolerance: 0.00000001
Output
- Cumulative alpha spending: 0.01250, 0.02626, 0.03879, 0.05000
- Critical values: 2.241, 2.091, 2.008, 1.951
- Stage levels (one-sided): 0.01250, 0.01826, 0.02232, 0.02552
sampleSizeResultsDesign plan parameters and output for means
Design parameters
- Information rates: 0.250, 0.500, 0.750, 1.000
- Critical values: 3.069, 2.326, 1.978, 1.763
- Futility bounds (non-binding): -Inf, -Inf, -Inf
- Cumulative alpha spending: 0.001074, 0.010527, 0.028206, 0.050000
- Local one-sided significance levels: 0.001074, 0.010012, 0.023983, 0.038976
- Significance level: 0.0500
- Type II error rate: 0.2000
- Test: one-sided
Default parameters
- Mean ratio: FALSE
- Theta H0: 0
- Normal approximation: FALSE
- Alternatives: 0.2, 0.4, 0.6, 0.8, 1.0
- Standard deviation: 1
- Treatment groups: 2
- Planned allocation ratio: 1
Sample size and output
- Maximum number of subjects: 649.6, 163.5, 73.5, 42, 27.5
- Maximum number of subjects (1): 324.8, 81.7, 36.7, 21, 13.7
- Maximum number of subjects (2): 324.8, 81.7, 36.7, 21, 13.7
- Number of subjects [1]: 162.4, 40.9, 18.4, 10.5, 6.9
- Number of subjects [2]: 324.8, 81.7, 36.7, 21, 13.7
- Number of subjects [3]: 487.2, 122.6, 55.1, 31.5, 20.6
- Number of subjects [4]: 649.6, 163.5, 73.5, 42, 27.5
- Reject per stage [1]: 0.03625
- Reject per stage [2]: 0.26640
- Reject per stage [3]: 0.30072
- Reject per stage [4]: 0.19663
- Early stop: 0.6034
- Expected number of subjects under H0: 643.2, 161.9, 72.8, 41.6, 27.2
- Expected number of subjects under H0/H1: 602.5, 151.6, 68.2, 39, 25.5
- Expected number of subjects under H1: 496.6, 125, 56.2, 32.1, 21
- Critical values (treatment effect scale) [1]: 0.490, 1.029, 1.697, 2.678, 4.519
- Critical values (treatment effect scale) [2]: 0.259, 0.525, 0.804, 1.108, 1.452
- Critical values (treatment effect scale) [3]: 0.180, 0.361, 0.545, 0.735, 0.933
- Critical values (treatment effect scale) [4]: 0.139, 0.277, 0.417, 0.558, 0.701
Legend
- (i): values of treatment arm i
- [k]: values at stage k
datasetDataset of means
- Stages: 1, 1, 2, 2, 3, 3, 4, 4
- Treatment groups: 1, 2, 1, 2, 1, 2, 1, 2
- Sample sizes: 22, 22, 11, 13, 22, 22, 11, 13
- Means: 1.0, 1.4, 1.1, 1.5, 1.0, 3.0, 1.0, 2.5
- Standard deviations: 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 1.3, 1.3
Calculated data
- Cumulative sample sizes: 22, 22, 33, 35, 55, 57, 66, 70
- Cumulative means: 1.000, 1.400, 1.033, 1.437, 1.020, 2.040, 1.017, 2.126
- Cumulative standard deviations: 1.000, 1.000, 1.381, 1.425, 1.639, 1.823, 1.579, 1.739
Show a summary of the object
designFisher |> summary()Sequential analysis with a maximum of 4 looks (Fisher’s combination test design)
Constant levels design, binding futility, one-sided overall significance level 2.5%, undefined endpoint.
| Stage | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Fixed weight | 1 | 1.225 | 1.225 | 1 |
| Cumulative alpha spent | 0.0137 | 0.0206 | 0.0237 | 0.0250 |
| Stage levels (one-sided) | 0.0137 | 0.0137 | 0.0137 | 0.0137 |
| Efficacy boundary (p product scale) | 0.01366638 | 0.00089215 | 0.00009643 | 0.00002151 |
| Futility boundary (separate p-value scale) | 0.4000 | 0.4000 | 0.4000 |
powerResults |> summary()Power calculation for a continuous endpoint
Sequential analysis with a maximum of 4 looks (group sequential design), one-sided overall significance level 5%. The results were calculated for a two-sample t-test, H0: mu(1) - mu(2) = 0, power directed towards larger values, H1: effect as specified, standard deviation = 1, maximum number of subjects = 100.
| Stage | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Planned information rate | 25% | 50% | 75% | 100% |
| Cumulative alpha spent | 0.0011 | 0.0105 | 0.0282 | 0.0500 |
| Stage levels (one-sided) | 0.0011 | 0.0100 | 0.0240 | 0.0390 |
| Efficacy boundary (z-value scale) | 3.069 | 2.326 | 1.978 | 1.763 |
| Efficacy boundary (t) | 1.382 | 0.681 | 0.465 | 0.356 |
| Cumulative power, alt. = 0 | 0.0011 | 0.0105 | 0.0282 | 0.0500 |
| Cumulative power, alt. = 0.2 | 0.0050 | 0.0537 | 0.1431 | 0.2471 |
| Cumulative power, alt. = 0.4 | 0.0189 | 0.1810 | 0.4137 | 0.6140 |
| Cumulative power, alt. = 0.6 | 0.0571 | 0.4163 | 0.7370 | 0.8979 |
| Cumulative power, alt. = 0.8 | 0.1394 | 0.6877 | 0.9317 | 0.9879 |
| Cumulative power, alt. = 1 | 0.2788 | 0.8831 | 0.9905 | 0.9994 |
| Number of subjects | 25.0 | 50.0 | 75.0 | 100.0 |
| Expected number of subjects under H1, alt. = 0 | 99.0 | |||
| Expected number of subjects under H1, alt. = 0.2 | 95.0 | |||
| Expected number of subjects under H1, alt. = 0.4 | 84.7 | |||
| Expected number of subjects under H1, alt. = 0.6 | 69.7 | |||
| Expected number of subjects under H1, alt. = 0.8 | 56.0 | |||
| Expected number of subjects under H1, alt. = 1 | 46.2 | |||
| Exit probability for efficacy (under H0) | 0.0011 | 0.0095 | 0.0177 | |
| Exit probability for efficacy (under H1), alt. = 0 | 0.0011 | 0.0095 | 0.0177 | |
| Exit probability for efficacy (under H1), alt. = 0.2 | 0.0050 | 0.0486 | 0.0894 | |
| Exit probability for efficacy (under H1), alt. = 0.4 | 0.0189 | 0.1621 | 0.2326 | |
| Exit probability for efficacy (under H1), alt. = 0.6 | 0.0571 | 0.3592 | 0.3207 | |
| Exit probability for efficacy (under H1), alt. = 0.8 | 0.1394 | 0.5483 | 0.2440 | |
| Exit probability for efficacy (under H1), alt. = 1 | 0.2788 | 0.6043 | 0.1074 |
Legend:
- (t): treatment effect scale
- alt.: alternative
analysisResults |> summary()Analysis results for a continuous endpoint
Sequential analysis with 4 looks (group sequential design), one-sided overall significance level 5%. The results were calculated using a two-sample t-test, equal variances option. H0: mu(1) - mu(2) = 0 against H1: mu(1) - mu(2) > 0.
| Stage | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| Planned information rate | 25% | 50% | 75% | 100% |
| Cumulative alpha spent | 0.0011 | 0.0105 | 0.0282 | 0.0500 |
| Stage levels (one-sided) | 0.0011 | 0.0100 | 0.0240 | 0.0390 |
| Efficacy boundary (z-value scale) | 3.069 | 2.326 | 1.978 | 1.763 |
| Cumulative effect size | -0.400 | -0.404 | -1.020 | -1.109 |
| Cumulative (pooled) standard deviation | 1.000 | 1.404 | 1.735 | 1.663 |
| Overall test statistic | -1.327 | -1.185 | -3.111 | -3.887 |
| Overall p-value | 0.9041 | 0.8799 | 0.9988 | 0.9999 |
| Test action | continue | continue | continue | accept |
| Conditional rejection probability | 0.0028 | 0.0001 | 0 | |
| 90% repeated confidence interval | [-1.386; 0.586] | [-1.216; 0.408] | [-1.676; -0.364] | [-1.616; -0.602] |
| Repeated p-value | >0.5 | >0.5 | >0.5 | >0.5 |
| Final p-value | 0.9999 | |||
| Final confidence interval | [-1.547; -0.608] | |||
| Median unbiased estimate | -1.078 |
Coerce object to data.frame: as.data.frame
designGroupSequential |> as.data.frame() typeOfDesign kMax stages informationRates alpha beta deltaWT futilityBounds
1 WT 4 1 0.25 0.05 0.2 0.1 -Inf
2 WT 4 2 0.50 0.05 0.2 0.1 -Inf
3 WT 4 3 0.75 0.05 0.2 0.1 -Inf
4 WT 4 4 1.00 0.05 0.2 0.1 NA
bindingFutility sided tolerance alphaSpent criticalValues stageLevels
1 FALSE 1 0.00000001 0.001073781 3.069028 0.001073781
2 FALSE 1 0.00000001 0.010526914 2.325888 0.010012250
3 FALSE 1 0.00000001 0.028205994 1.977663 0.023983344
4 FALSE 1 0.00000001 0.050000000 1.762694 0.038976069
dataset |> as.data.frame() stages groups sampleSizes means stDevs overallSampleSizes overallMeans
1 1 1 22 1.0 1.0 22 1.000000
2 1 2 22 1.4 1.0 22 1.400000
3 2 1 11 1.1 2.0 33 1.033333
4 2 2 13 1.5 2.0 35 1.437143
5 3 1 22 1.0 2.0 55 1.020000
6 3 2 22 3.0 2.0 57 2.040351
7 4 1 11 1.0 1.3 66 1.016667
8 4 2 13 2.5 1.3 70 2.125714
overallStDevs
1 1.000000
2 1.000000
3 1.381500
4 1.425418
5 1.639151
6 1.822857
7 1.578664
8 1.738706
Coerce object to data.frame: as.data.frame with argument ‘niceColumnNamesEnabled = TRUE’
designFisher |> as.data.frame(niceColumnNamesEnabled = TRUE) Method Maximum # stages Stage Information rate Significance level Alpha_0
1 equalAlpha 4 1 0.2 0.025 0.4
2 equalAlpha 4 2 0.5 0.025 0.4
3 equalAlpha 4 3 0.8 0.025 0.4
4 equalAlpha 4 4 1.0 0.025 NA
Binding futility Test Tolerance Cumulative alpha spending
1 TRUE 1 0.00000000000001 0.01366638
2 TRUE 1 0.00000000000001 0.02055086
3 TRUE 1 0.00000000000001 0.02372061
4 TRUE 1 0.00000000000001 0.02500000
Critical value Stage level Non stochastic curtailment
1 0.01366637982 0.01366638 FALSE
2 0.00089215382 0.01366638 FALSE
3 0.00009643023 0.01366638 FALSE
4 0.00002151406 0.01366638 FALSE
designCharacteristics |> as.data.frame(niceColumnNamesEnabled = TRUE) Inflation factor Stage Information Power Rejection probability under H1
1 1.04846 1 1.620541 0.03624538 0.03624538
2 1.04846 2 3.241081 0.30264612 0.26640074
3 1.04846 3 4.861622 0.60337036 0.30072424
4 1.04846 4 6.482163 0.80000000 0.19662964
Futility probability under H1 Ratio expected vs fixed sample size under H1
1 0 0.8014789
2 0 0.8014789
3 0 0.8014789
4 NA 0.8014789
Ratio expected vs fixed sample size under a value between H0 and H1
1 0.9724133
2 0.9724133
3 0.9724133
4 0.9724133
Ratio expected vs fixed sample size under H0
1 1.038026
2 1.038026
3 1.038026
4 1.038026
powerAndASN |> as.data.frame(niceColumnNamesEnabled = TRUE) Stage Effect Average sample size (ASN) Power Early stop Overall reject
1 1 0.5 26.7863 0.9266075 0.06839003 0.9266075
2 2 0.5 26.7863 0.9266075 0.39887080 0.9266075
3 3 0.5 26.7863 0.9266075 0.31845861 0.9266075
4 4 0.5 26.7863 0.9266075 NA 0.9266075
Reject per stage Overall futility Futility stop per stage
1 0.06839003 0.000000002898419 0.0000000009865876
2 0.39887080 0.000000002898419 0.0000000009758407
3 0.31845861 0.000000002898419 0.0000000009359906
4 0.14088808 0.000000002898419 NA
Coerce object to matrix: as.matrix
designGroupSequential |> as.matrix() Stage Type of design Maximum # stages Information rate Significance level
"1" "WT" "4" "0.25" "0.05"
"2" "WT" "4" "0.50" "0.05"
"3" "WT" "4" "0.75" "0.05"
"4" "WT" "4" "1.00" "0.05"
Type II error rate Delta (Wang & Tsiatis) Futility bound (non-binding)
"0.2" "0.1" "-Inf"
"0.2" "0.1" "-Inf"
"0.2" "0.1" "-Inf"
"0.2" "0.1" NA
Binding futility Test Tolerance Cumulative alpha spending Critical value
"FALSE" "1" "0.00000001" "0.001073781" "3.069028"
"FALSE" "1" "0.00000001" "0.010526914" "2.325888"
"FALSE" "1" "0.00000001" "0.028205994" "1.977663"
"FALSE" "1" "0.00000001" "0.050000000" "1.762694"
Stage level
"0.001073781"
"0.010012250"
"0.023983344"
"0.038976069"
System: rpact 4.2.1, R version 4.5.1 (2025-06-13), platform: x86_64-pc-linux-gnu
To cite R in publications use:
R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
To cite package ‘rpact’ in publications use:
Wassmer G, Pahlke F (2025). rpact: Confirmatory Adaptive Clinical Trial Design and Analysis. doi:10.32614/CRAN.package.rpact https://doi.org/10.32614/CRAN.package.rpact, R package version 4.2.0, https://cran.r-project.org/package=rpact.