
Package ‘rpact’
July 24, 2025

Title Confirmatory Adaptive Clinical Trial Design and Analysis

Version 4.2.1

Date 2025-07-23

Description Design and analysis of confirmatory adaptive clinical trials with continuous, bi-
nary, and survival endpoints according to the methods described in the monograph by Wass-
mer and Brannath (2016) <doi:10.1007/978-3-319-32562-0>. This includes classical group se-
quential as well as multi-stage adaptive hypotheses tests that are based on the combination test-
ing principle.

License LGPL-3

Encoding UTF-8

LazyData true

URL https://www.rpact.org,

https://www.rpact.com,

https://github.com/rpact-com/rpact,

https://rpact-com.github.io/rpact/,

https://rpact.shinyapps.io/connect

BugReports https://github.com/rpact-com/rpact/issues

Language en-US

Depends R (>= 3.6.0)

Imports methods,
stats,
utils,
graphics,
tools,
rlang,
R6 (>= 2.5.1),
knitr (>= 1.19),
Rcpp (>= 1.0.3)

LinkingTo Rcpp

Suggests ggplot2 (>= 3.5.0),
testthat (>= 3.0.0),
rmarkdown (>= 1.10),
rappdirs (>= 0.3.3)

VignetteBuilder knitr, rmarkdown

1

https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://www.rpact.com
https://github.com/rpact-com/rpact
https://rpact-com.github.io/rpact/
https://rpact.shinyapps.io/connect
https://github.com/rpact-com/rpact/issues

2

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first *analysis*

Collate 'RcppExports.R'
'f_logger.R'
'class_dictionary.R'
'f_core_constants.R'
'f_core_utilities.R'
'f_core_assertions.R'
'f_analysis_utilities.R'
'f_parameter_set_utilities.R'
'class_core_parameter_set.R'
'class_core_plot_settings.R'
'f_core_plot.R'
'class_design.R'
'f_object_r_code.R'
'f_analysis_base.R'
'class_analysis_dataset.R'
'class_analysis_stage_results.R'
'class_analysis_results.R'
'f_design_general_utilities.R'
'class_time.R'
'class_design_set.R'
'class_design_plan.R'
'class_design_power_and_asn.R'
'class_event_probabilities.R'
'f_simulation_base_counts.R'
'f_simulation_utilities.R'
'f_simulation_base_survival.R'
'class_simulation_results.R'
'class_performance_score.R'
'class_summary.R'
'data.R'
'f_analysis_base_means.R'
'f_analysis_base_rates.R'
'f_analysis_base_survival.R'
'f_analysis_boundary_recalculation.R'
'f_analysis_enrichment.R'
'f_analysis_enrichment_means.R'
'f_analysis_enrichment_rates.R'
'f_analysis_enrichment_survival.R'
'f_analysis_multiarm.R'
'f_analysis_multiarm_means.R'
'f_analysis_multiarm_rates.R'
'f_analysis_multiarm_survival.R'
'f_as251.R'
'f_core_output_formats.R'
'f_design_fisher_combination_test.R'
'f_design_group_sequential.R'

Contents 3

'f_design_plan_counts.R'
'f_design_plan_means.R'
'f_design_plan_plot.R'
'f_design_plan_rates.R'
'f_design_plan_survival.R'
'f_design_plan_utilities.R'
'f_quality_assurance.R'
'f_simulation_base_means.R'
'f_simulation_base_rates.R'
'f_simulation_calc_subjects_function.R'
'f_simulation_enrichment.R'
'f_simulation_enrichment_means.R'
'f_simulation_enrichment_rates.R'
'f_simulation_enrichment_survival.R'
'f_simulation_multiarm.R'
'f_simulation_multiarm_means.R'
'f_simulation_multiarm_rates.R'
'f_simulation_multiarm_survival.R'
'f_simulation_performance_score.R'
'f_simulation_plot.R'
'parameter_descriptions.R'
'pkgname.R'

Contents
AccrualTime . 9
AnalysisResults . 10
AnalysisResultsConditionalDunnett . 11
AnalysisResultsEnrichment . 12
AnalysisResultsEnrichmentFisher . 12
AnalysisResultsEnrichmentInverseNormal . 13
AnalysisResultsFisher . 15
AnalysisResultsGroupSequential . 16
AnalysisResultsInverseNormal . 17
AnalysisResultsMultiArm . 19
AnalysisResultsMultiArmFisher . 19
AnalysisResultsMultiArmInverseNormal . 20
AnalysisResultsMultiHypotheses . 22
as.data.frame.AnalysisResults . 22
as.data.frame.ParameterSet . 23
as.data.frame.PowerAndAverageSampleNumberResult 23
as.data.frame.StageResults . 24
as.data.frame.TrialDesign . 25
as.data.frame.TrialDesignCharacteristics . 26
as.data.frame.TrialDesignPlan . 27
as.data.frame.TrialDesignSet . 28
as.matrix.FieldSet . 29
as251Normal . 30
as251StudentT . 31
checkInstallationQualificationStatus . 32
ClosedCombinationTestResults . 32
ConditionalPowerResults . 33

4 Contents

ConditionalPowerResultsEnrichmentMeans . 34
ConditionalPowerResultsEnrichmentRates . 34
ConditionalPowerResultsMeans . 35
ConditionalPowerResultsRates . 36
ConditionalPowerResultsSurvival . 36
dataEnrichmentMeans . 37
dataEnrichmentMeansStratified . 37
dataEnrichmentRates . 38
dataEnrichmentRatesStratified . 38
dataEnrichmentSurvival . 38
dataEnrichmentSurvivalStratified . 39
dataMeans . 39
dataMultiArmMeans . 39
dataMultiArmRates . 40
dataMultiArmSurvival . 40
dataRates . 40
Dataset . 41
DatasetMeans . 41
DatasetRates . 42
DatasetSurvival . 42
dataSurvival . 43
disableStartupMessages . 43
enableStartupMessages . 44
EventProbabilities . 45
FieldSet . 46
getAccrualTime . 46
getAnalysisResults . 49
getClosedCombinationTestResults . 54
getClosedConditionalDunnettTestResults . 56
getConditionalPower . 57
getConditionalRejectionProbabilities . 60
getData . 61
getDataset . 62
getDesignCharacteristics . 67
getDesignConditionalDunnett . 69
getDesignFisher . 70
getDesignGroupSequential . 72
getDesignInverseNormal . 76
getDesignSet . 79
getEventProbabilities . 81
getFinalConfidenceInterval . 83
getFinalPValue . 85
getGroupSequentialProbabilities . 86
getLambdaStepFunction . 88
getLogLevel . 89
getLongFormat . 89
getNumberOfSubjects . 90
getObservedInformationRates . 91
getOutputFormat . 93
getParameterCaption . 94
getParameterName . 95
getParameterType . 96

Contents 5

getPerformanceScore . 97
getPiecewiseSurvivalTime . 98
getPlotSettings . 101
getPowerAndAverageSampleNumber . 102
getPowerCounts . 103
getPowerMeans . 106
getPowerRates . 109
getPowerSurvival . 111
getRawData . 117
getRepeatedConfidenceIntervals . 118
getRepeatedPValues . 120
getSampleSizeCounts . 121
getSampleSizeMeans . 124
getSampleSizeRates . 126
getSampleSizeSurvival . 129
getSimulationCounts . 134
getSimulationEnrichmentMeans . 138
getSimulationEnrichmentRates . 144
getSimulationEnrichmentSurvival . 148
getSimulationMeans . 152
getSimulationMultiArmMeans . 158
getSimulationMultiArmRates . 163
getSimulationMultiArmSurvival . 168
getSimulationRates . 173
getSimulationSurvival . 178
getStageResults . 189
getSystemIdentifier . 191
getTestActions . 192
getWideFormat . 193
InstallationQualificationResult . 193
kableParameterSet . 194
knit_print.FieldSet . 195
knit_print.ParameterSet . 196
knit_print.SummaryFactory . 197
length.TrialDesignSet . 198
MarkdownReporter . 198
mvnprd . 199
mvstud . 200
names.AnalysisResults . 201
names.FieldSet . 201
names.SimulationResults . 202
names.StageResults . 202
names.TrialDesignSet . 203
NumberOfSubjects . 203
obtain . 204
ParameterSet . 205
param_accrualIntensity . 205
param_accrualIntensityType . 205
param_accrualIntensity_counts . 206
param_accrualTime . 206
param_accrualTime_counts . 206
param_activeArms . 206

6 Contents

param_adaptations . 207
param_allocationRatioPlanned . 207
param_allocationRatioPlanned_sampleSize . 207
param_alpha . 208
param_alternative . 208
param_alternative_simulation . 208
param_beta . 208
param_bindingFutility . 209
param_calcEventsFunction . 209
param_calcSubjectsFunction . 209
param_conditionalPower . 210
param_conditionalPowerSimulation . 210
param_dataInput . 210
param_design . 211
param_design_with_default . 211
param_digits . 211
param_directionUpper . 211
param_doseLevels . 212
param_dropoutRate1 . 212
param_dropoutRate2 . 212
param_dropoutTime . 212
param_effectList . 213
param_effectMatrix . 213
param_effectMeasure . 213
param_epsilonValue . 213
param_eventTime . 214
param_fixedExposureTime_counts . 214
param_followUpTime_counts . 214
param_gED50 . 214
param_grid . 215
param_groups . 215
param_hazardRatio . 215
param_includeAllParameters . 216
param_informationEpsilon . 216
param_informationRates . 216
param_intersectionTest_Enrichment . 217
param_intersectionTest_MultiArm . 217
param_kappa . 217
param_kMax . 218
param_lambda1 . 218
param_lambda1_counts . 218
param_lambda2 . 218
param_lambda2_counts . 219
param_lambda_counts . 219
param_legendPosition . 219
param_maxInformation . 220
param_maxNumberOfEventsPerStage . 220
param_maxNumberOfIterations . 220
param_maxNumberOfSubjects . 221
param_maxNumberOfSubjectsPerStage . 221
param_maxNumberOfSubjects_survival . 221
param_median1 . 222

Contents 7

param_median2 . 222
param_minNumberOfEventsPerStage . 222
param_minNumberOfSubjectsPerStage . 223
param_niceColumnNamesEnabled . 223
param_nMax . 223
param_normalApproximation . 224
param_nPlanned . 224
param_overdispersion_counts . 224
param_palette . 225
param_pi1_rates . 225
param_pi1_survival . 225
param_pi2_rates . 225
param_pi2_survival . 226
param_piecewiseSurvivalTime . 226
param_plannedCalendarTime . 226
param_plannedEvents . 227
param_plannedSubjects . 227
param_plotPointsEnabled . 227
param_plotSettings . 228
param_populations . 228
param_rValue . 228
param_seed . 228
param_selectArmsFunction . 229
param_selectPopulationsFunction . 229
param_showSource . 229
param_showStatistics . 230
param_sided . 230
param_slope . 230
param_stage . 231
param_stageResults . 231
param_stDev . 231
param_stDevH1 . 231
param_stDevSimulation . 232
param_stratifiedAnalysis . 232
param_successCriterion . 232
param_theta . 233
param_thetaH0 . 233
param_thetaH1 . 233
param_theta_counts . 234
param_three_dots . 234
param_three_dots_plot . 234
param_threshold . 234
param_tolerance . 235
param_typeOfComputation . 235
param_typeOfDesign . 235
param_typeOfSelection . 236
param_typeOfShapeMeans . 236
param_typeOfShapeRates . 237
param_typeOfShapeSurvival . 237
param_userAlphaSpending . 238
param_varianceOption . 238
PerformanceScore . 238

8 Contents

PiecewiseSurvivalTime . 239
plot.AnalysisResults . 239
plot.Dataset . 242
plot.EventProbabilities . 244
plot.NumberOfSubjects . 245
plot.ParameterSet . 247
plot.SimulationResults . 249
plot.StageResults . 251
plot.SummaryFactory . 253
plot.TrialDesign . 254
plot.TrialDesignPlan . 257
plot.TrialDesignSet . 259
plot.TrialDesignSummaries . 261
PlotSettings . 262
plotTypes . 262
PowerAndAverageSampleNumberResult . 264
print.Dataset . 264
print.FieldSet . 265
print.InstallationQualificationResult . 265
print.ParameterSet . 266
print.SummaryFactory . 267
print.TrialDesignCharacteristics . 267
print.TrialDesignSummaries . 268
printCitation . 268
rawDataTwoArmNormal . 269
rcmd . 269
readDataset . 271
readDatasets . 273
resetLogLevel . 274
resetOptions . 275
rpact . 276
saveOptions . 277
setLogLevel . 278
setOutputFormat . 279
setupPackageTests . 281
SimulationResults . 281
SimulationResultsCountData . 282
SimulationResultsEnrichmentMeans . 283
SimulationResultsEnrichmentRates . 285
SimulationResultsEnrichmentSurvival . 287
SimulationResultsMeans . 289
SimulationResultsMultiArmMeans . 291
SimulationResultsMultiArmRates . 293
SimulationResultsMultiArmSurvival . 295
SimulationResultsRates . 297
SimulationResultsSurvival . 299
StageResults . 301
StageResultsEnrichmentMeans . 302
StageResultsEnrichmentRates . 303
StageResultsEnrichmentSurvival . 304
StageResultsMeans . 304
StageResultsMultiArmMeans . 305

AccrualTime 9

StageResultsMultiArmRates . 307
StageResultsMultiArmSurvival . 308
StageResultsRates . 309
StageResultsSurvival . 310
summary.AnalysisResults . 311
summary.Dataset . 312
summary.ParameterSet . 313
summary.TrialDesignSet . 315
SummaryFactory . 316
testPackage . 316
test_plan_section . 318
TrialDesign . 319
TrialDesignCharacteristics . 320
TrialDesignConditionalDunnett . 321
TrialDesignFisher . 322
TrialDesignGroupSequential . 323
TrialDesignInverseNormal . 325
TrialDesignPlan . 326
TrialDesignPlanCountData . 327
TrialDesignPlanMeans . 328
TrialDesignPlanRates . 330
TrialDesignPlanSurvival . 332
TrialDesignSet . 334
utilitiesForPiecewiseExponentialDistribution . 335
utilitiesForSurvivalTrials . 337
writeDataset . 338
writeDatasets . 339

Index 342

AccrualTime Accrual Time

Description

Class for the definition of accrual time and accrual intensity.

Details

AccrualTime is a class for the definition of accrual time and accrual intensity.

Fields

endOfAccrualIsUserDefined If TRUE, the end of accrual has to be defined by the user (i.e., the
length of accrualTime is equal to the length of accrualIntensity -1). Is a logical vector of
length 1.

followUpTimeMustBeUserDefined Specifies whether follow up time needs to be defined or not.
Is a logical vector of length 1.

maxNumberOfSubjectsIsUserDefined If TRUE, the maximum number of subjects has been spec-
ified by the user, if FALSE, it was calculated.

10 AnalysisResults

maxNumberOfSubjectsCanBeCalculatedDirectly If TRUE, the maximum number of subjects can
directly be calculated. Is a logical vector of length 1.

absoluteAccrualIntensityEnabled If TRUE, absolute accrual intensity is enabled. Is a logical
vector of length 1.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualIntensityRelative The relative accrual intensities.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

remainingTime In survival designs, the remaining time for observation. Is a numeric vector of
length 1.

piecewiseAccrualEnabled Indicates whether piecewise accrual is selected. Is a logical vector of
length 1.

AnalysisResults Basic Class for Analysis Results

Description

A basic class for analysis results.

Details

AnalysisResults is the basic class for

• AnalysisResultsFisher,

• AnalysisResultsGroupSequential,

• AnalysisResultsInverseNormal,

• AnalysisResultsMultiArmFisher,

• AnalysisResultsMultiArmInverseNormal,

• AnalysisResultsConditionalDunnett,

• AnalysisResultsEnrichmentFisher,

• AnalysisResultsEnrichmentInverseNormal.

AnalysisResultsConditionalDunnett 11

AnalysisResultsConditionalDunnett

Analysis Results Multi-Arm Conditional Dunnett

Description

Class for multi-arm analysis results based on a conditional Dunnett test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a conditional Dunnett test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

12 AnalysisResultsEnrichmentFisher

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

AnalysisResultsEnrichment

Basic Class for Analysis Results Enrichment

Description

A basic class for enrichment analysis results.

Details

AnalysisResultsEnrichment is the basic class for

• AnalysisResultsEnrichmentFisher and

• AnalysisResultsEnrichmentInverseNormal.

AnalysisResultsEnrichmentFisher

Analysis Results Enrichment Fisher

Description

Class for enrichment analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a Fisher combination test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

AnalysisResultsEnrichmentInverseNormal 13

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControls The assumed rates in the control group for enrichment designs, i.e., designs with
multiple subsets.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.
stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.

When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

AnalysisResultsEnrichmentInverseNormal

Analysis Results Enrichment Inverse Normal

Description

Class for enrichment analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the enrichment analysis results of an inverse normal design.

14 AnalysisResultsEnrichmentInverseNormal

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControls The assumed rates in the control group for enrichment designs, i.e., designs with
multiple subsets.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

AnalysisResultsFisher 15

AnalysisResultsFisher Analysis Results Fisher

Description

Class for analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a Fisher combination test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

16 AnalysisResultsGroupSequential

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidenceIntervalLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

AnalysisResultsGroupSequential

Analysis Results Group Sequential

Description

Class for analysis results results based on a group sequential design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a group sequential design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

AnalysisResultsInverseNormal 17

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.
equalVariances Describes if the variances in two treatment groups are assumed to be the same.

Is a logical vector of length 1.
testActions The test decisions at each stage of the trial. Is a character vector of length kMax.
conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each

stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidenceIntervalLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

maxInformation The maximum information. Is a numeric vector of length 1 containing a whole
number.

informationEpsilon The absolute information epsilon, which defines the maximum distance
from the observed information to the maximum information that causes the final analysis.
Updates at the final analysis if the observed information at the final analysis is smaller ("under-
running") than the planned maximum information. Is either a positive integer value specifying
the absolute information epsilon or a floating point number >0 and <1 to define a relative in-
formation epsilon.

AnalysisResultsInverseNormal

Analysis Results Inverse Normal

Description

Class for analysis results results based on an inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a inverse normal design.

18 AnalysisResultsInverseNormal

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidenceIntervalLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

AnalysisResultsMultiArm 19

AnalysisResultsMultiArm

Basic Class for Analysis Results Multi-Arm

Description

A basic class for multi-arm analysis results.

Details

AnalysisResultsMultiArm is the basic class for

• AnalysisResultsMultiArmFisher,

• AnalysisResultsMultiArmInverseNormal, and

• AnalysisResultsConditionalDunnett.

AnalysisResultsMultiArmFisher

Analysis Results Multi-Arm Fisher

Description

Class for multi-arm analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a Fisher combination test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

20 AnalysisResultsMultiArmInverseNormal

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

AnalysisResultsMultiArmInverseNormal

Analysis Results Multi-Arm Inverse Normal

Description

Class for multi-arm analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of an inverse normal design.

AnalysisResultsMultiArmInverseNormal 21

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervalLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

22 as.data.frame.AnalysisResults

AnalysisResultsMultiHypotheses

Basic Class for Analysis Results Multi-Hypotheses

Description

A basic class for multi-hypotheses analysis results.

Details

AnalysisResultsMultiHypotheses is the basic class for

• AnalysisResultsMultiArm and
• AnalysisResultsEnrichment.

as.data.frame.AnalysisResults

Coerce AnalysisResults to a Data Frame

Description

Returns the AnalysisResults object as data frame.

Usage

S3 method for class 'AnalysisResults'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
...,
niceColumnNamesEnabled = FALSE

)

Arguments

x An AnalysisResults object created by getAnalysisResults().
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

Details

Coerces the analysis results to a data frame.

Value

Returns a data.frame.

as.data.frame.ParameterSet 23

as.data.frame.ParameterSet

Coerce Parameter Set to a Data Frame

Description

Returns the ParameterSet as data frame.

Usage

S3 method for class 'ParameterSet'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
...,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE

)

Arguments

x A FieldSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

Details

Coerces the parameter set to a data frame.

Value

Returns a data.frame.

as.data.frame.PowerAndAverageSampleNumberResult

Coerce Power And Average Sample Number Result to a Data Frame

Description

Returns the PowerAndAverageSampleNumberResult as data frame.

24 as.data.frame.StageResults

Usage

S3 method for class 'PowerAndAverageSampleNumberResult'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

Arguments

x A PowerAndAverageSampleNumberResult object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the PowerAndAverageSampleNumberResult object to a data frame.

Value

Returns a data.frame.

Examples

Not run:
data <- as.data.frame(getPowerAndAverageSampleNumber(getDesignGroupSequential()))
head(data)
dim(data)

End(Not run)

as.data.frame.StageResults

Coerce Stage Results to a Data Frame

Description

Returns the StageResults as data frame.

as.data.frame.TrialDesign 25

Usage

S3 method for class 'StageResults'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
type = 1,
...

)

Arguments

x A StageResults object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the stage results to a data frame.

Value

Returns a data.frame.

as.data.frame.TrialDesign

Coerce TrialDesign to a Data Frame

Description

Returns the TrialDesign as data frame.

Usage

S3 method for class 'TrialDesign'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

26 as.data.frame.TrialDesignCharacteristics

Arguments

x A TrialDesign object.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Each element of the TrialDesign is converted to a column in the data frame.

Value

Returns a data.frame.

Examples

Not run:
as.data.frame(getDesignGroupSequential())

End(Not run)

as.data.frame.TrialDesignCharacteristics

Coerce TrialDesignCharacteristics to a Data Frame

Description

Returns the TrialDesignCharacteristics as data frame.

Usage

S3 method for class 'TrialDesignCharacteristics'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

as.data.frame.TrialDesignPlan 27

Arguments

x A TrialDesignCharacteristics object.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Each element of the TrialDesignCharacteristics is converted to a column in the data frame.

Value

Returns a data.frame.

Examples

Not run:
as.data.frame(getDesignCharacteristics(getDesignGroupSequential()))

End(Not run)

as.data.frame.TrialDesignPlan

Coerce Trial Design Plan to a Data Frame

Description

Returns the TrialDesignPlan as data frame.

Usage

S3 method for class 'TrialDesignPlan'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
...

)

28 as.data.frame.TrialDesignSet

Arguments

x A TrialDesignPlan object.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the design plan to a data frame.

Value

Returns a data.frame.

Examples

Not run:
as.data.frame(getSampleSizeMeans())

End(Not run)

as.data.frame.TrialDesignSet

Coerce Trial Design Set to a Data Frame

Description

Returns the TrialDesignSet as data frame.

Usage

S3 method for class 'TrialDesignSet'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
addPowerAndAverageSampleNumber = FALSE,
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,
...

)

as.matrix.FieldSet 29

Arguments

x A TrialDesignSet object.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

addPowerAndAverageSampleNumber

If TRUE, power and average sample size will be added to data frame, default is
FALSE.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the design set to a data frame.

Value

Returns a data.frame.

Examples

Not run:
designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
as.data.frame(designSet)

End(Not run)

as.matrix.FieldSet Coerce Field Set to a Matrix

Description

Returns the FrameSet as matrix.

Usage

S3 method for class 'FieldSet'
as.matrix(x, ..., enforceRowNames = TRUE, niceColumnNamesEnabled = TRUE)

30 as251Normal

Arguments

x A FieldSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

enforceRowNames

If TRUE, row names will be created depending on the object type, default is TRUE.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

Details

Coerces the frame set to a matrix.

Value

Returns a matrix.

as251Normal Algorithm AS 251: Normal Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, doi:10.2307/2347754.

Usage

as251Normal(
lower,
upper,
sigma,
...,
eps = 1e-06,
errorControl = c("strict", "halvingIntervals"),
intervalSimpsonsRule = 0

)

Arguments

lower Lower limits of integration. Array of N dimensions

upper Upper limits of integration. Array of N dimensions

sigma Values defining correlation structure. Array of N dimensions

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

eps desired accuracy. Defaults to 1e-06

errorControl error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used

intervalSimpsonsRule

Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

https://doi.org/10.2307/2347754

as251StudentT 31

Details

For a multivariate normal vector with correlation structure defined by rho(i,j) = bpd(i) * bpd(j),
computes the probability that the vector falls in a rectangle in n-space with error less than eps.

This function calculates the bdp value from sigma, determines the right inf value and calls mvnprd.

as251StudentT Algorithm AS 251: Student T Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by

https://doi.org/10.2307/2347754

32 ClosedCombinationTestResults

checkInstallationQualificationStatus

Check Installation Qualification Status

Description

This function checks whether the installation qualification for the rpact package has been com-
pleted. If not, it provides a message prompting the user to run the testPackage() function to
perform the qualification.

Usage

checkInstallationQualificationStatus(showMessage = TRUE)

Arguments

showMessage A logical value indicating whether to display a message if the installation quali-
fication has not been completed. Default is TRUE.

Details

The installation qualification is a critical step in ensuring that the rpact package is correctly in-
stalled and validated for use in GxP-relevant environments. This function verifies the qualification
status and informs the user if further action is required.

Value

Invisibly returns TRUE if the installation qualification has been completed, otherwise returns FALSE.

Examples

Not run:
checkInstallationQualificationStatus()

End(Not run)

ClosedCombinationTestResults

Analysis Results Closed Combination Test

Description

Class for multi-arm analysis results based on a closed combination test.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a closed combination test design.

ConditionalPowerResults 33

Fields

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

indices Indicates which stages are available for analysis.

adjustedStageWisePValues The multiplicity adjusted p-values from the separate stages. Is a
numeric matrix.

overallAdjustedTestStatistics The overall adjusted test statistics.

separatePValues The p-values from the separate stages. Is a numeric matrix.

conditionalErrorRate The calculated conditional error rate.

secondStagePValues For conditional Dunnett test, the conditional or unconditional p-value cal-
culated for the second stage.

rejected Indicates whether a hypothesis is rejected or not.

rejectedIntersections The simulated number of rejected arms in the closed testing procedure..
Is a logical matrix.

ConditionalPowerResults

Conditional Power Results

Description

Class for conditional power calculations

Details

This object cannot be created directly; use getConditionalPower() with suitable arguments to
create the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

34 ConditionalPowerResultsEnrichmentRates

ConditionalPowerResultsEnrichmentMeans

Conditional Power Results Enrichment Means

Description

Class for conditional power calculations of enrichment means data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

ConditionalPowerResultsEnrichmentRates

Conditional Power Results Enrichment Rates

Description

Class for conditional power calculations of enrichment rates data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

ConditionalPowerResultsMeans 35

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.
simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-

ble when using Fisher designs. Is a logical vector of length 1.
conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length

1 containing a value between 0 and 1.
piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,

i.e., designs with multiple subsets.
piControls The assumed rates in the control group for enrichment designs, i.e., designs with

multiple subsets.

ConditionalPowerResultsMeans

Conditional Power Results Means

Description

Class for conditional power calculations of means data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.
simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-

ble when using Fisher designs. Is a logical vector of length 1.
conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length

1 containing a value between 0 and 1.
thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the

hazard ratio. Is a numeric vector.
assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

36 ConditionalPowerResultsSurvival

ConditionalPowerResultsRates

Conditional Power Results Rates

Description

Class for conditional power calculations of rates data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

ConditionalPowerResultsSurvival

Conditional Power Results Survival

Description

Class for conditional power calculations of survival data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

dataEnrichmentMeans 37

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

dataEnrichmentMeans Enrichment Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset(dataEnrichmentMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeans

Format

A data.frame object.

dataEnrichmentMeansStratified

Stratified Enrichment Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset(dataEnrichmentMeansStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeansStratified

Format

A data.frame object.

38 dataEnrichmentSurvival

dataEnrichmentRates Enrichment Dataset of Rates

Description

A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRates

Format

A data.frame object.

dataEnrichmentRatesStratified

Stratified Enrichment Dataset of Rates

Description

A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRatesStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRatesStratified

Format

A data.frame object.

dataEnrichmentSurvival

Enrichment Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset(dataEnrichmentSurvival)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvival

Format

A data.frame object.

dataEnrichmentSurvivalStratified 39

dataEnrichmentSurvivalStratified

Stratified Enrichment Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset(dataEnrichmentSurvivalStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvivalStratified

Format

A data.frame object.

dataMeans One-Arm Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of one group. Use getDataset(dataMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMeans

Format

A data.frame object.

dataMultiArmMeans Multi-Arm Dataset of Means

Description

A dataset containing the sample sizes, means, and standard deviations of four groups. Use getDataset(dataMultiArmMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmMeans

Format

A data.frame object.

40 dataRates

dataMultiArmRates Multi-Arm Dataset of Rates

Description

A dataset containing the sample sizes and events of three groups. Use getDataset(dataMultiArmRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmRates

Format

A data.frame object.

dataMultiArmSurvival Multi-Arm Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of three groups. Use
getDataset(dataMultiArmSurvival) to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmSurvival

Format

A data.frame object.

dataRates One-Arm Dataset of Rates

Description

A dataset containing the sample sizes and events of one group. Use getDataset(dataRates) to
create a dataset object that can be processed by getAnalysisResults().

Usage

dataRates

Format

A data.frame object.

Dataset 41

Dataset Dataset

Description

Basic class for datasets.

Details

Dataset is the basic class for

• DatasetMeans,

• DatasetRates,

• DatasetSurvival, and

• DatasetEnrichmentSurvival.

This basic class contains the fields stages and groups and several commonly used functions.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

groups The group numbers. Is a numeric vector.

DatasetMeans Dataset of Means

Description

Class for a dataset of means.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of means.

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

means The means. Is a numeric vector of length number of stages times number of groups.

stDevs The standard deviations. Is a numeric vector of length number of stages times number of
groups.

overallSampleSizes The overall, i.e., cumulative sample sizes. Is a numeric vector of length
number of stages times number of groups.

42 DatasetSurvival

overallMeans The overall, i.e., cumulative means. Is a numeric vector of length number of stages
times number of groups.

overallStDevs The overall, i.e., cumulative standard deviations. Is a numeric vector of length
number of stages times number of groups.

DatasetRates Dataset of Rates

Description

Class for a dataset of rates.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of rates.

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

overallSampleSizes The overall, i.e., cumulative sample sizes. Is a numeric vector of length
number of stages times number of groups.

events The number of events in each group at each stage. Is a numeric vector of length number of
stages times number of groups.

overallEvents The overall, i.e., cumulative events. Is a numeric vector of length number of stages
times number of groups containing whole numbers.

DatasetSurvival Dataset of Survival Data

Description

Class for a dataset of survival data.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of survival data.

dataSurvival 43

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

events The number of events in each group at each stage. Is a numeric vector of length number of
stages times number of groups.

overallEvents The overall, i.e., cumulative events. Is a numeric vector of length number of stages
times number of groups containing whole numbers.

allocationRatios The observed allocation ratios. Is a numeric vector of length number of stages
times number of groups.

overallAllocationRatios The cumulative allocation ratios. Is a numeric vector of length num-
ber of stages times number of groups.

logRanks The logrank test statistics at each stage of the trial. Is a numeric vector of length number
of stages times number of groups.

overallLogRanks The overall, i.e., cumulative logrank test statistics. Is a numeric vector of length
number of stages times number of groups.

dataSurvival One-Arm Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of one group. Use getDataset(dataSurvival)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataSurvival

Format

A data.frame object.

disableStartupMessages

Disable Startup Messages

Description

This function disables the startup messages for the rpact package by setting the rpact.startup.message.enabled
option to FALSE.

Usage

disableStartupMessages()

44 enableStartupMessages

Details

Once this function is called, the startup messages will remain disabled until explicitly re-enabled us-
ing the enableStartupMessages() function. The current state is saved using the saveOptions()
function.

Value

This function does not return a value. It is called for its side effects.

Examples

Not run:
disableStartupMessages()

End(Not run)

enableStartupMessages Enable Startup Messages

Description

This function enables the startup messages for the rpact package by setting the rpact.startup.message.enabled
option to TRUE.

Usage

enableStartupMessages()

Details

Once this function is called, the startup messages will remain enabled until explicitly disabled using
the disableStartupMessages() function. The current state is saved using the saveOptions()
function.

Value

This function does not return a value. It is called for its side effects.

Examples

Not run:
enableStartupMessages()

End(Not run)

EventProbabilities 45

EventProbabilities Event Probabilities

Description

Class for the definition of event probabilities.

Details

EventProbabilities is a class for the definition of event probabilities.

Fields

time The time values. Is a numeric vector.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

overallEventProbabilities Deprecated field which will be removed in one of the next releases.
Use cumulativeEventProbabilities instead.

cumulativeEventProbabilities The cumulative event probabilities in survival designs. Is a nu-
meric vector.

eventProbabilities1 The event probabilities in treatment group 1. Is a numeric vector.

eventProbabilities2 The event probabilities in treatment group 2. Is a numeric vector.

46 getAccrualTime

FieldSet Field Set

Description

Basic class for field sets.

Details

The field set implements basic functions for a set of fields.

getAccrualTime Get Accrual Time

Description

Returns an AccrualTime object that contains the accrual time and the accrual intensity.

Usage

getAccrualTime(
accrualTime = NA_real_,
...,
accrualIntensity = NA_real_,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_

)

Arguments

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

The maximum number of subjects.

getAccrualTime 47

Value

Returns an AccrualTime object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getNumberOfSubjects() for calculating the number of subjects at given time points.

Examples

Not run:
Assume that in a trial the accrual after the first 6 months is doubled
and the total accrual time is 30 months.

48 getAccrualTime

Further assume that a total of 1000 subjects are entered in the trial.
The number of subjects to be accrued in the first 6 months and afterwards
is achieved through
getAccrualTime(

accrualTime = c(0, 6, 30),
accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 1000

)

The same result is obtained via the list based definition
getAccrualTime(

list(
"0 - <6" = 0.1,
"6 - <=30" = 0.2

),
maxNumberOfSubjects = 1000

)

Calculate the end of accrual at given absolute intensity:
getAccrualTime(

accrualTime = c(0, 6),
accrualIntensity = c(18, 36), maxNumberOfSubjects = 1000

)

Via the list based definition this is
getAccrualTime(

list(
"0 - <6" = 18,
">=6" = 36

),
maxNumberOfSubjects = 1000

)

You can use an accrual time object in getSampleSizeSurvival() or
getPowerSurvival().
For example, if the maximum number of subjects and the follow up
time needs to be calculated for a given effect size:
accrualTime <- getAccrualTime(

accrualTime = c(0, 6, 30),
accrualIntensity = c(0.1, 0.2)

)
getSampleSizeSurvival(accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2)

Or if the power and follow up time needs to be calculated for given
number of events and subjects:
accrualTime <- getAccrualTime(

accrualTime = c(0, 6, 30),
accrualIntensity = c(0.1, 0.2), maxNumberOfSubjects = 110

)
getPowerSurvival(

accrualTime = accrualTime, pi1 = 0.4, pi2 = 0.2,
maxNumberOfEvents = 46

)

How to show accrual time details

You can use a sample size or power object as argument for the function
getAccrualTime():

getAnalysisResults 49

sampleSize <- getSampleSizeSurvival(
accrualTime = c(0, 6), accrualIntensity = c(22, 53),
lambda2 = 0.05, hazardRatio = 0.8, followUpTime = 6

)
sampleSize
accrualTime <- getAccrualTime(sampleSize)
accrualTime

End(Not run)

getAnalysisResults Get Analysis Results

Description

Calculates and returns the analysis results for the specified design and data.

Usage

getAnalysisResults(
design,
dataInput,
...,
directionUpper = NA,
thetaH0 = NA_real_,
nPlanned = NA_real_,
allocationRatioPlanned = 1,
stage = NA_integer_,
maxInformation = NULL,
informationEpsilon = NULL

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further arguments to be passed to methods (cf., separate functions in "See Also"
below), e.g.,

thetaH1 and stDevH1 (or assumedStDev / assumedStDevs), pi1, pi2, or piTreatments, piControl(s)
The assumed effect size, standard deviation or rates to calculate the con-
ditional power if nPlanned is specified. For survival designs, thetaH1
refers to the hazard ratio. For one-armed trials with binary outcome, only
pi1 can be specified, for two-armed trials with binary outcome, pi1 and
pi2 can be specified referring to the assumed treatment and control rate,
respectively. In multi-armed or enrichment designs, you can specify a
value or a vector with elements referring to the treatment arms or the sub-
populations, respectively. For testing rates, the parameters to be specified
are piTreatments and piControl (multi-arm designs) and piTreatments

50 getAnalysisResults

and piControls (enrichment designs).
If not specified, the conditional power is calculated under the assumption
of observed effect sizes, standard deviations, rates, or hazard ratios.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.

seed Seed for simulating the conditional power for Fisher’s combination test.
See above, default is a random seed.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

stdErrorEstimate Estimate of standard error for calculation of final confi-
dence intervals for comparing rates in two treatment groups, default is
"pooled".

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

getAnalysisResults 51

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

stage The stage number (optional). Default: total number of existing stages in the data
input.

maxInformation Positive value specifying the maximum information.
informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

Details

Given a design and a dataset, at given stage the function calculates the test results (effect sizes, stage-
wise test statistics and p-values, overall p-values and test statistics, conditional rejection probability
(CRP), conditional power, Repeated Confidence Intervals (RCIs), repeated overall p-values, and
final stage p-values, median unbiased effect estimates, and final confidence intervals.

For designs with more than two treatments arms (multi-arm designs) or enrichment designs a closed
combination test is performed. That is, additionally the statistics to be used in a closed testing
procedure are provided.

The conditional power is calculated if the planned sample size for the subsequent stages (nPlanned)
is specified. The conditional power is calculated either under the assumption of the observed effect
or under the assumption of an assumed effect, that has to be specified (see above).
For testing rates in a two-armed trial, pi1 and pi2 typically refer to the rates in the treatment and the
control group, respectively. This is not mandatory, however, and so pi1 and pi2 can be interchanged.
In many-to-one multi-armed trials, piTreatments and piControl refer to the rates in the treatment
arms and the one control arm, and so they cannot be interchanged. piTreatments and piControls in

52 getAnalysisResults

enrichment designs can principally be interchanged, but we use the plural form to indicate that the
rates can be differently specified for the sub-populations.

Median unbiased effect estimates and confidence intervals are calculated if a group sequential de-
sign or an inverse normal combination test design was chosen, i.e., it is not applicable for Fisher’s
p-value combination test design. For the inverse normal combination test design with more than
two stages, a warning informs that the validity of the confidence interval is theoretically shown only
if no sample size change was performed.

A final stage p-value for Fisher’s combination test is calculated only if a two-stage design was
chosen. For Fisher’s combination test, the conditional power for more than one remaining stages is
estimated via simulation.

Final stage p-values, median unbiased effect estimates, and final confidence intervals are not calcu-
lated for multi-arm and enrichment designs.

Value

Returns an AnalysisResults object. The following generics (R generic functions) are available
for this result object:

• names to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getObservedInformationRates()

Other analysis functions: getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

Not run:
Example 1 One-Sample t Test
Perform an analysis within a three-stage group sequential design with
O'Brien & Fleming boundaries and one-sample data with a continuous outcome
where H0: mu = 1.2 is to be tested
dsnGS <- getDesignGroupSequential()
dataMeans <- getDataset(

n = c(30, 30),
means = c(1.96, 1.76),

getAnalysisResults 53

stDevs = c(1.92, 2.01)
)
getAnalysisResults(design = dsnGS, dataInput = dataMeans, thetaH0 = 1.2)

You can obtain the results when performing an inverse normal combination test
with these data by using the commands
dsnIN <- getDesignInverseNormal()
getAnalysisResults(design = dsnIN, dataInput = dataMeans, thetaH0 = 1.2)

Example 2 Use Function Approach with Time to Event Data
Perform an analysis within a use function approach according to an
O'Brien & Fleming type use function and survival data where
where H0: hazard ratio = 1 is to be tested. The events were observed
over time and maxInformation = 120, informationEpsilon = 5 specifies
that 116 > 120 - 5 observed events defines the final analysis.
design <- getDesignGroupSequential(typeOfDesign = "asOF")
dataSurvival <- getDataset(

cumulativeEvents = c(33, 72, 116),
cumulativeLogRanks = c(1.33, 1.88, 1.902)

)
getAnalysisResults(design,

dataInput = dataSurvival,
maxInformation = 120, informationEpsilon = 5

)

Example 3 Multi-Arm Design
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results together with the CRP, conditional power
(assuming a total of 40 subjects for each comparison and effect sizes 0.5
and 0.8 for treatment arm 1 and 3, respectively, and standard deviation 1.2),
RCIs and p-values of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group; displayed with summary and plot commands):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18)

)
design <- getDesignInverseNormal(kMax = 4)
x <- getAnalysisResults(design,

dataInput = data, intersectionTest = "Bonferroni",
nPlanned = c(40, 40), thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2

)
summary(x)
if (require(ggplot2)) plot(x, thetaRange = c(0, 0.8))
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
y <- getAnalysisResults(design,

54 getClosedCombinationTestResults

dataInput = data,
nPlanned = 40, thetaH1 = c(0.5, NA, 0.8), assumedStDevs = 1.2, stage = 1

)
summary(y)
if (require(ggplot2)) plot(y, thetaRange = c(0, 0.4))

Example 4 Enrichment Design
Perform an two-stage enrichment design analysis with O'Brien & Fleming boundaries
where one sub-population (S1) and a full population (F) are considered as primary
analysis sets. At interim, S1 is selected for further analysis and the sample
size is increased accordingly. With the Spiessens & Debois intersection test,
the results of a closed adaptive test procedure together with the CRP, repeated
RCIs and p-values are obtained as follows with the given data (displayed with
summary and plot commands):
design <- getDesignInverseNormal(kMax = 2, typeOfDesign = "OF")
dataS1 <- getDataset(

means1 = c(13.2, 12.8),
means2 = c(11.1, 10.8),
stDev1 = c(3.4, 3.3),
stDev2 = c(2.9, 3.5),
n1 = c(21, 42),
n2 = c(19, 39)

)
dataNotS1 <- getDataset(

means1 = c(11.8, NA),
means2 = c(10.5, NA),
stDev1 = c(3.6, NA),
stDev2 = c(2.7, NA),
n1 = c(15, NA),
n2 = c(13, NA)

)
dataBoth <- getDataset(S1 = dataS1, R = dataNotS1)
x <- getAnalysisResults(design,

dataInput = dataBoth,
intersectionTest = "SpiessensDebois",
varianceOption = "pooledFromFull",
stratifiedAnalysis = TRUE

)
summary(x)
if (require(ggplot2)) plot(x, type = 2)

End(Not run)

getClosedCombinationTestResults

Get Closed Combination Test Results

Description

Calculates and returns the results from the closed combination test in multi-arm and population
enrichment designs.

Usage

getClosedCombinationTestResults(stageResults)

getClosedCombinationTestResults 55

Arguments

stageResults The results at given stage, obtained from getStageResults().

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

Not run:
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18)

)

56 getClosedConditionalDunnettTestResults

design <- getDesignInverseNormal(kMax = 4)
stageResults <- getStageResults(design,

dataInput = data,
intersectionTest = "Bonferroni"

)
getClosedCombinationTestResults(stageResults)

End(Not run)

getClosedConditionalDunnettTestResults

Get Closed Conditional Dunnett Test Results

Description

Calculates and returns the results from the closed conditional Dunnett test.

Usage

getClosedConditionalDunnettTestResults(
stageResults,
...,
stage = stageResults$stage

)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For performing the conditional Dunnett test the design must be defined through the function getDesignConditionalDunnett().
See Koenig et al. (2008) and Wassmer & Brannath (2016), chapter 11 for details of the test proce-
dure.

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

getConditionalPower 57

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getConditionalPower(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
In a two-stage design a conditional Dunnett test should be performed
where the unconditional second stage p-values should be used for the
test decision.
At the first stage the second treatment arm was dropped. The results of
a closed conditionsal Dunnett test are obtained as follows with the given
data (treatment arm 4 refers to the reference group):
data <- getDataset(

n1 = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = c(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18)

)

For getting the results of the closed test procedure, use the following commands:
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
stageResults <- getStageResults(design, dataInput = data)
getClosedConditionalDunnettTestResults(stageResults)

End(Not run)

getConditionalPower Get Conditional Power

Description

Calculates and returns the conditional power.

58 getConditionalPower

Usage

getConditionalPower(stageResults, ..., nPlanned, allocationRatioPlanned = 1)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Further (optional) arguments to be passed:

thetaH1 and stDevH1 (or assumedStDev / assumedStDevs), pi1, pi2, or piTreatments, piControl(s)
The assumed effect size, standard deviation or rates to calculate the con-
ditional power if nPlanned is specified. For survival designs, thetaH1
refers to the hazard ratio. For one-armed trials with binary outcome, only
pi1 can be specified, for two-armed trials with binary outcome, pi1 and
pi2 can be specified referring to the assumed treatment and control rate,
respectively. In multi-armed or enrichment designs, you can specify a
value or a vector with elements referring to the treatment arms or the sub-
populations, respectively. For testing rates, the parameters to be specified
are piTreatments and piControl (multi-arm designs) and piTreatments
and piControls (enrichment designs).
If not specified, the conditional power is calculated under the assumption
of observed effect sizes, standard deviations, rates, or hazard ratios.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.

seed Seed for simulating the conditional power for Fisher’s combination test.
See above, default is a random seed.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

Details

The conditional power is calculated if the planned sample size for the subsequent stages is specified.
For testing rates in a two-armed trial, pi1 and pi2 typically refer to the rates in the treatment and the
control group, respectively. This is not mandatory, however, and so pi1 and pi2 can be interchanged.
In many-to-one multi-armed trials, piTreatments and piControl refer to the rates in the treatment
arms and the one control arm, and so they cannot be interchanged. piTreatments and piControls in

getConditionalPower 59

enrichment designs can principally be interchanged, but we use the plural form to indicate that the
rates can be differently specified for the sub-populations.

For Fisher’s combination test, the conditional power for more than one remaining stages is estimated
via simulation.

Value

Returns a ConditionalPowerResults object. The following generics (R generic functions) are
available for this result object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

plot.StageResults() or plot.AnalysisResults() for plotting the conditional power.

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalRejectionProbabilities(), getFinalConfidenceInterval(), getFinalPValue(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
data <- getDataset(

n1 = c(22, 13, 22, 13),
n2 = c(22, 11, 22, 11),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 1, 2.5),
stds1 = c(1, 2, 2, 1.3),
stds2 = c(1, 2, 2, 1.3)

)
stageResults <- getStageResults(

getDesignGroupSequential(kMax = 4),
dataInput = data, stage = 2, directionUpper = FALSE

)
getConditionalPower(stageResults, thetaH1 = -0.4,

nPlanned = c(64, 64), assumedStDev = 1.5,
allocationRatioPlanned = 3

)

End(Not run)

60 getConditionalRejectionProbabilities

getConditionalRejectionProbabilities

Get Conditional Rejection Probabilities

Description

Calculates the conditional rejection probabilities (CRP) for given test results.

Usage

getConditionalRejectionProbabilities(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Further (optional) arguments to be passed:

iterations Iterations for simulating the conditional rejection probabilities for
Fisher’s combination test. For checking purposes, it can be estimated via
simulation with specified iterations.

seed Seed for simulating the conditional rejection probabilities for Fisher’s
combination test. See above, default is a random seed.

Details

The conditional rejection probability is the probability, under H0, to reject H0 in one of the subse-
quent (remaining) stages. The probability is calculated using the specified design. For testing rates
and the survival design, the normal approximation is used, i.e., it is calculated with the use of the
prototype case testing a mean for normally distributed data with known variance.

The conditional rejection probabilities are provided up to the specified stage.

For Fisher’s combination test, you can check the validity of the CRP calculation via simulation.

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each col-
umn represents a stage, each row a comparison) containing the conditional rejection probabilities.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getFinalConfidenceInterval(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
Calculate CRP for a Fisher's combination test design with
two remaining stages and check the results by simulation.
design <- getDesignFisher(

kMax = 4, alpha = 0.01,
informationRates = c(0.1, 0.3, 0.8, 1)

)

getData 61

data <- getDataset(n = c(40, 40), events = c(20, 22))
sr <- getStageResults(design, data, thetaH0 = 0.4)
getConditionalRejectionProbabilities(sr)
getConditionalRejectionProbabilities(sr,

simulateCRP = TRUE,
seed = 12345, iterations = 10000

)

End(Not run)

getData Get Simulation Data

Description

Returns the aggregated simulation data.

Usage

getData(x)

getData.SimulationResults(x)

Arguments

x A SimulationResults object created by getSimulationMeans(),
getSimulationRates(), getSimulationSurvival(), getSimulationMultiArmMeans(),
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().

Details

This function can be used to get the aggregated simulated data from an simulation results object,
for example, obtained by getSimulationSurvival(). In this case, the data frame contains the
following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

6. analysisTime: The analysis time.

7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

8. eventsPerStage1: The observed number of events per stage in treatment group 1.

9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. eventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

62 getDataset

12. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

13. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

16. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1 or pi1H1 and pi2H1.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.

A subset of variables is provided for getSimulationMeans(), getSimulationRates(), getSimulationMultiArmMeans(),
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().

Value

Returns a data.frame.

Examples

Not run:
results <- getSimulationSurvival(

pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)
data <- getData(results)
head(data)
dim(data)

End(Not run)

getDataset Get Dataset

Description

Creates a dataset object and returns it.

Usage

getDataset(..., floatingPointNumbersEnabled = FALSE)

getDataSet(..., floatingPointNumbersEnabled = FALSE)

getDataset 63

Arguments

... A data.frame or some data vectors defining the dataset.
floatingPointNumbersEnabled

If TRUE, sample sizes and event numbers can be specified as floating-point num-
bers (this make sense, e.g., for theoretical comparisons);
by default floatingPointNumbersEnabled = FALSE, i.e., samples sizes and event
numbers defined as floating-point numbers will be truncated.

Details

The different dataset types DatasetMeans, of DatasetRates, or DatasetSurvival can be created
as follows:

• An element of DatasetMeans for one sample is created by
getDataset(sampleSizes =, means =, stDevs =) where
sampleSizes, means, stDevs are vectors with stage-wise sample sizes, means and standard
deviations of length given by the number of available stages.

• An element of DatasetMeans for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, means1 =, means2 =,
stDevs1 =, stDevs2 =) where sampleSizes1, sampleSizes2, means1, means2, stDevs1,
stDevs2 are vectors with stage-wise sample sizes, means and standard deviations for the two
treatment groups of length given by the number of available stages.

• An element of DatasetRates for one sample is created by
getDataset(sampleSizes =, events =) where sampleSizes, events are vectors with stage-
wise sample sizes and events of length given by the number of available stages.

• An element of DatasetRates for two samples is created by
getDataset(sampleSizes1 =, sampleSizes2 =, events1 =, events2 =) where sampleSizes1,
sampleSizes2, events1, events2 are vectors with stage-wise sample sizes and events for the
two treatment groups of length given by the number of available stages.

• An element of DatasetSurvival is created by
getDataset(events =, logRanks =, allocationRatios =) where events, logRanks, and
allocation ratios are the stage-wise events, (one-sided) logrank statistics, and allocation
ratios.

• An element of DatasetMeans, DatasetRates, and DatasetSurvival for more than one com-
parison is created by adding subsequent digits to the variable names. The system can analyze
these data in a multi-arm many-to-one comparison setting where the group with the highest
index represents the control group.

Prefix overall[Capital case of first letter of variable name]... for the variable names en-
ables entering the overall (cumulative) results and calculates stage-wise statistics. Since rpact ver-
sion 3.2, the prefix cumulative[Capital case of first letter of variable name]... or cum[Capital
case of first letter of variable name]... can alternatively be used for this.

n can be used in place of samplesizes.

Note that in survival design usually the overall (cumulative) events and logrank test statistics are
provided in the output, so
getDataset(cumulativeEvents=, cumulativeLogRanks =, cumulativeAllocationRatios =)
is the usual command for entering survival data. Note also that for cumulativeLogranks also the
z scores from a Cox regression can be used.

For multi-arm designs, the index refers to the considered comparison. For example,
getDataset(events1=c(13, 33), logRanks1 = c(1.23, 1.55), events2 = c(16, NA), logRanks2

64 getDataset

= c(1.55, NA))
refers to the case where one active arm (1) is considered at both stages whereas active arm 2 was
dropped at interim. Number of events and logrank statistics are entered for the corresponding com-
parison to control (see Examples).

For enrichment designs, the comparison of two samples is provided for an unstratified (sub-population
wise) or stratified data input.
For non-stratified (sub-population wise) data input the data sets are defined for the sub-populations
S1, S2, ..., F, where F refers to the full populations. Use of getDataset(S1 = , S2, ..., F =)
defines the data set to be used in getAnalysisResults() (see examples)
For stratified data input the data sets are defined for the strata S1, S12, S2, ..., R, where R refers to the
remainder of the strata such that the union of all sets is the full population. Use of getDataset(S1 =
, S12 = , S2, ..., R =) defines the data set to be used in getAnalysisResults() (see examples)
For survival data, for enrichment designs the log-rank statistics can only be entered as stratified
log-rank statistics in order to provide strong control of Type I error rate. For stratified data input, the
variables to be specified in getDataset() are cumEvents, cumExpectedEvents, cumVarianceEvents,
and cumAllocationRatios or overallEvents, overallExpectedEvents, overallVarianceEvents,
and overallAllocationRatios. From this, (stratified) log-rank tests and and the independent in-
crements are calculated.

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Examples

Not run:
Create a Dataset of Means (one group):
datasetOfMeans <- getDataset(

n = c(22, 11, 22, 11),
means = c(1, 1.1, 1, 1),
stDevs = c(1, 2, 2, 1.3)

)
datasetOfMeans
datasetOfMeans$show(showType = 2)

datasetOfMeans2 <- getDataset(
cumulativeSampleSizes = c(22, 33, 55, 66),
cumulativeMeans = c(1.000, 1.033, 1.020, 1.017),
cumulativeStDevs = c(1.00, 1.38, 1.64, 1.58)

)
datasetOfMeans2
datasetOfMeans2$show(showType = 2)
as.data.frame(datasetOfMeans2)

Create a Dataset of Means (two groups):

getDataset 65

datasetOfMeans3 <- getDataset(
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans3

datasetOfMeans4 <- getDataset(
cumulativeSampleSizes1 = c(22, 33, 55, 66),
cumulativeSampleSizes2 = c(22, 35, 57, 70),
cumulativeMeans1 = c(1, 1.033, 1.020, 1.017),
cumulativeMeans2 = c(1.4, 1.437, 2.040, 2.126),
cumulativeStDevs1 = c(1, 1.38, 1.64, 1.58),
cumulativeStDevs2 = c(1, 1.43, 1.82, 1.74)

)
datasetOfMeans4

df <- data.frame(
stages = 1:4,
n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans5 <- getDataset(df)
datasetOfMeans5

Create a Dataset of Means (three groups) where the comparison of
treatment arm 1 to control is dropped at the second interim stage:
datasetOfMeans6 <- getDataset(

cumN1 = c(22, 33, NA),
cumN2 = c(20, 34, 56),
cumN3 = c(22, 31, 52),
cumMeans1 = c(1.64, 1.54, NA),
cumMeans2 = c(1.7, 1.5, 1.77),
cumMeans3 = c(2.5, 2.06, 2.99),
cumStDevs1 = c(1.5, 1.9, NA),
cumStDevs2 = c(1.3, 1.3, 1.1),
cumStDevs3 = c(1, 1.3, 1.8))

datasetOfMeans6

Create a Dataset of Rates (one group):
datasetOfRates <- getDataset(

n = c(8, 10, 9, 11),
events = c(4, 5, 5, 6)

)
datasetOfRates

Create a Dataset of Rates (two groups):
datasetOfRates2 <- getDataset(

n2 = c(8, 10, 9, 11),
n1 = c(11, 13, 12, 13),

66 getDataset

events2 = c(3, 5, 5, 6),
events1 = c(10, 10, 12, 12)

)
datasetOfRates2

Create a Dataset of Rates (three groups) where the comparison of
treatment arm 2 to control is dropped at the first interim stage:
datasetOfRates3 <- getDataset(

cumN1 = c(22, 33, 44),
cumN2 = c(20, NA, NA),
cumN3 = c(20, 34, 44),
cumEvents1 = c(11, 14, 22),
cumEvents2 = c(17, NA, NA),
cumEvents3 = c(17, 19, 33))

datasetOfRates3

Create a Survival Dataset
datasetSurvival <- getDataset(

cumEvents = c(8, 15, 19, 31),
cumAllocationRatios = c(1, 1, 1, 2),
cumLogRanks = c(1.52, 1.98, 1.99, 2.11)

)
datasetSurvival

Create a Survival Dataset with four comparisons where treatment
arm 2 was dropped at the first interim stage, and treatment arm 4
at the second.
datasetSurvival2 <- getDataset(

cumEvents1 = c(18, 45, 56),
cumEvents2 = c(22, NA, NA),
cumEvents3 = c(12, 41, 56),
cumEvents4 = c(27, 56, NA),
cumLogRanks1 = c(1.52, 1.98, 1.99),
cumLogRanks2 = c(3.43, NA, NA),
cumLogRanks3 = c(1.45, 1.67, 1.87),
cumLogRanks4 = c(1.12, 1.33, NA)

)
datasetSurvival2

Enrichment: Stratified and unstratified data input
The following data are from one study. Only the first
(stratified) data input enables a stratified analysis.

Stratified data input
S1 <- getDataset(

sampleSize1 = c(18, 17),
sampleSize2 = c(12, 33),
mean1 = c(125.6, 111.1),
mean2 = c(107.7, 77.7),
stDev1 = c(120.1, 145.6),
stDev2 = c(128.5, 133.3))

S2 <- getDataset(
sampleSize1 = c(11, NA),
sampleSize2 = c(14, NA),
mean1 = c(100.1, NA),
mean2 = c(68.3, NA),
stDev1 = c(116.8, NA),

getDesignCharacteristics 67

stDev2 = c(124.0, NA))
S12 <- getDataset(

sampleSize1 = c(21, 17),
sampleSize2 = c(21, 12),
mean1 = c(135.9, 117.7),
mean2 = c(84.9, 107.7),
stDev1 = c(185.0, 92.3),
stDev2 = c(139.5, 107.7))

R <- getDataset(
sampleSize1 = c(19, NA),
sampleSize2 = c(33, NA),
mean1 = c(142.4, NA),
mean2 = c(77.1, NA),
stDev1 = c(120.6, NA),
stDev2 = c(163.5, NA))

dataEnrichment <- getDataset(S1 = S1, S2 = S2, S12 = S12, R = R)
dataEnrichment

Unstratified data input
S1N <- getDataset(

sampleSize1 = c(39, 34),
sampleSize2 = c(33, 45),
stDev1 = c(156.503, 120.084),
stDev2 = c(134.025, 126.502),
mean1 = c(131.146, 114.4),
mean2 = c(93.191, 85.7))

S2N <- getDataset(
sampleSize1 = c(32, NA),
sampleSize2 = c(35, NA),
stDev1 = c(163.645, NA),
stDev2 = c(131.888, NA),
mean1 = c(123.594, NA),
mean2 = c(78.26, NA))

F <- getDataset(
sampleSize1 = c(69, NA),
sampleSize2 = c(80, NA),
stDev1 = c(165.468, NA),
stDev2 = c(143.979, NA),
mean1 = c(129.296, NA),
mean2 = c(82.187, NA))

dataEnrichmentN <- getDataset(S1 = S1N, S2 = S2N, F = F)
dataEnrichmentN

End(Not run)

getDesignCharacteristics

Get Design Characteristics

Description

Calculates the characteristics of a design and returns it.

68 getDesignCharacteristics

Usage

getDesignCharacteristics(design = NULL, ...)

Arguments

design The trial design.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Calculates the inflation factor (IF), the expected reduction in sample size under H1, under H0, and
under a value in between H0 and H1. Furthermore, absolute information values are calculated under
the prototype case testing H0: mu = 0 against H1: mu = 1.

Value

Returns a TrialDesignCharacteristics object. The following generics (R generic functions) are
available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignConditionalDunnett(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Not run:
Calculate design characteristics for a three-stage O'Brien & Fleming
design at power 90% and compare it with Pocock's design.
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1))
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1, typeOfDesign = "P"))

End(Not run)

getDesignConditionalDunnett 69

getDesignConditionalDunnett

Get Design Conditional Dunnett Test

Description

Defines the design to perform an analysis with the conditional Dunnett test.

Usage

getDesignConditionalDunnett(
alpha = 0.025,
informationAtInterim = 0.5,
...,
secondStageConditioning = TRUE,
directionUpper = NA

)

Arguments

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

informationAtInterim

The information to be expected at interim, default is informationAtInterim =
0.5.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

secondStageConditioning

The way the second stage p-values are calculated within the closed system of
hypotheses. If secondStageConditioning = FALSE is specified, the uncondi-
tional adjusted p-values are used, otherwise conditional adjusted p-values are
calculated, default is secondStageConditioning = TRUE (for details, see Koenig
et al., 2008).

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

Details

For performing the conditional Dunnett test the design must be defined through this function. You
can define the information fraction and the way of how to compute the second stage p-values only
in the design definition, and not in the analysis call.
See getClosedConditionalDunnettTestResults() for an example and Koenig et al. (2008) and
Wassmer & Brannath (2016), chapter 11 for details of the test procedure.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

70 getDesignFisher

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

getDesignFisher Get Design Fisher

Description

Performs Fisher’s combination test and returns critical values for this design.

Usage

getDesignFisher(
...,
kMax = NA_integer_,
alpha = NA_real_,
method = c("equalAlpha", "fullAlpha", "noInteraction", "userDefinedAlpha"),
userAlphaSpending = NA_real_,
alpha0Vec = NA_real_,
informationRates = NA_real_,
sided = 1,
bindingFutility = NA,
directionUpper = NA,
tolerance = 1e-14,
iterations = 0,
seed = NA_real_

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

getDesignFisher 71

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", de-
fault is "equalAlpha" (for details, see Wassmer, 1999).

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

alpha0Vec Stopping for futility bounds for stage-wise p-values.
informationRates

The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

bindingFutility

If bindingFutility = TRUE is specified the calculation of the critical values is
affected by the futility bounds (default is TRUE).

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

tolerance The numerical tolerance, default is 1e-14.

iterations The number of simulation iterations, e.g., getDesignFisher(iterations =
100000) checks the validity of the critical values for the design. The default
value of iterations is 0, i.e., no simulation will be executed.

seed Seed for simulating the power for Fisher’s combination test. See above, default
is a random seed.

Details

getDesignFisher() calculates the critical values and stage levels for Fisher’s combination test as
described in Bauer (1989), Bauer and Koehne (1994), Bauer and Roehmel (1995), and Wassmer
(1999) for equally and unequally sized stages.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

72 getDesignGroupSequential

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet() for creating a set of designs to compare.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignGroupSequential(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Not run:
Calculate critical values for a two-stage Fisher's combination test
with full level alpha = 0.05 at the final stage and stopping for
futility bound alpha0 = 0.50, as described in Bauer and Koehne (1994).
getDesignFisher(kMax = 2, method = "fullAlpha", alpha = 0.05, alpha0Vec = 0.50)

End(Not run)

getDesignGroupSequential

Get Design Group Sequential

Description

Provides adjusted boundaries and defines a group sequential design.

Usage

getDesignGroupSequential(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1L,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum", "asP", "asOF", "asKD",

"asHSD", "asUser", "noEarlyEfficacy"),
deltaWT = NA_real_,
deltaPT1 = NA_real_,
deltaPT0 = NA_real_,
optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,

getDesignGroupSequential 73

userBetaSpending = NA_real_,
efficacyStops = NA,
futilityStops = NA,
gammaB = NA_real_,
bindingFutility = NA,
directionUpper = NA,
betaAdjustment = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
delayedInformation = NA_real_,
tolerance = 1e-08

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax - 1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.

74 getDesignGroupSequential

typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

efficacyStops Logical vector of length kMax - 1 indicating efficacy stops. Default is NA.

futilityStops Logical vector of length kMax - 1 indicating futility stops. Default is NA.

gammaB Parameter for beta spending function.
bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

constantBoundsHP

The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

delayedInformation

Delay of information for delayed response designs. Can be a numeric value or a
numeric vector of length kMax - 1

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

getDesignGroupSequential 75

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet() for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignInverseNormal(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

Examples

Not run:
Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignGroupSequential(kMax = 4, alpha = 0.05, sided = 2,

typeOfDesign = "WT", deltaWT = 0.25)

Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignGroupSequential(kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "asKD", gammaA = 2.5, typeBetaSpending = "bsKD",
gammaB = 2.5, bindingFutility = TRUE)

Calculate the Pocock type alpha spending critical values if the first
interim analysis was performed after 40% of the maximum information was observed
and the second after 70% of the maximum information was observed (default alpha = 0.025)
getDesignGroupSequential(informationRates = c(0.4, 0.7), typeOfDesign = "asP")

End(Not run)

76 getDesignInverseNormal

getDesignInverseNormal

Get Design Inverse Normal

Description

Provides adjusted boundaries and defines a group sequential design for its use in the inverse normal
combination test.

Usage

getDesignInverseNormal(
...,
kMax = NA_integer_,
alpha = NA_real_,
beta = NA_real_,
sided = 1L,
informationRates = NA_real_,
futilityBounds = NA_real_,
typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum", "asP", "asOF", "asKD",

"asHSD", "asUser", "noEarlyEfficacy"),
deltaWT = NA_real_,
deltaPT1 = NA_real_,
deltaPT0 = NA_real_,
optimizationCriterion = c("ASNH1", "ASNIFH1", "ASNsum"),
gammaA = NA_real_,
typeBetaSpending = c("none", "bsP", "bsOF", "bsKD", "bsHSD", "bsUser"),
userAlphaSpending = NA_real_,
userBetaSpending = NA_real_,
efficacyStops = NA,
futilityStops = NA,
gammaB = NA_real_,
bindingFutility = NA,
directionUpper = NA,
betaAdjustment = NA,
constantBoundsHP = 3,
twoSidedPower = NA,
tolerance = 1e-08

)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

getDesignInverseNormal 77

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length
kMax - 1).

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

deltaWT Delta for Wang & Tsiatis Delta class.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.
optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending

Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending

The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

efficacyStops Logical vector of length kMax - 1 indicating efficacy stops. Default is NA.

futilityStops Logical vector of length kMax - 1 indicating futility stops. Default is NA.

gammaB Parameter for beta spending function.
bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

78 getDesignInverseNormal

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

constantBoundsHP

The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to 0 or the power
should be directed to one part.

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP", "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1" minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum"
minimizes the sum of the maximum sample size, the expected sample size under a value midway
H0 and H1, and the expected sample size under H1.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet() for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber()

getDesignSet 79

Examples

Not run:
Calculate two-sided critical values for a four-stage
Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05
getDesignInverseNormal(kMax = 4, alpha = 0.05, sided = 2,

typeOfDesign = "WT", deltaWT = 0.25)

Defines a two-stage design at one-sided alpha = 0.025 with provision of early stopping
if the one-sided p-value exceeds 0.5 at interim and no early stopping for efficacy.
The futility bound is non-binding.
getDesignInverseNormal(kMax = 2, typeOfDesign = "noEarlyEfficacy", futilityBounds = 0)

Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignInverseNormal(kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "asKD", gammaA = 2.5, typeBetaSpending = "bsKD",
gammaB = 2.5, bindingFutility = TRUE)

End(Not run)

getDesignSet Get Design Set

Description

Creates a trial design set object and returns it.

Usage

getDesignSet(...)

Arguments

... designs or design and one or more design parameters, e.g., deltaWT = c(0.1,
0.3, 0.4).

• design The master design (optional, you need to specify an additional pa-
rameter that shall be varied).

• designs The designs to compare (optional, you need to specify the variable
variedParameters).

Details

Specify a master design and one or more design parameters or a list of designs.

Value

Returns a TrialDesignSet object. The following generics (R generic functions) are available for
this result object:

• names to obtain the field names,

80 getDesignSet

• length to obtain the number of design,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Example 1
design <- getDesignGroupSequential(

alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1

)
designSet <- getDesignSet()
designSet$add(design = design, deltaWT = c(0.3, 0.4))
if (require(ggplot2)) plot(designSet, type = 1)

Example 2 (shorter script)
design <- getDesignGroupSequential(

alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1

)
designSet <- getDesignSet(design = design, deltaWT = c(0.3, 0.4))
if (require(ggplot2)) plot(designSet, type = 1)

Example 3 (use of designs instead of design)
d1 <- getDesignGroupSequential(

alpha = 0.05, kMax = 2,
sided = 1, beta = 0.2, typeOfDesign = "asHSD",
gammaA = 0.5, typeBetaSpending = "bsHSD", gammaB = 0.5

)
d2 <- getDesignGroupSequential(

alpha = 0.05, kMax = 4,
sided = 1, beta = 0.2, typeOfDesign = "asP",
typeBetaSpending = "bsP"

)
designSet <- getDesignSet(

designs = c(d1, d2),
variedParameters = c("typeOfDesign", "kMax")

)
if (require(ggplot2)) plot(designSet, type = 8, nMax = 20)

End(Not run)

getEventProbabilities 81

getEventProbabilities Get Event Probabilities

Description

Returns the event probabilities for specified parameters at given time vector.

Usage

getEventProbabilities(
time,
...,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
kappa = 1,
piecewiseSurvivalTime = NA_real_,
lambda2 = NA_real_,
lambda1 = NA_real_,
allocationRatioPlanned = 1,
hazardRatio = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12,
maxNumberOfSubjects = NA_real_

)

Arguments

time A numeric vector with time values.
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details

see getAccrualTime()).
accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

82 getEventProbabilities

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

The function computes the overall event probabilities in a two treatment groups design. For details
of the parameters see getSampleSizeSurvival().

Value

Returns a EventProbabilities object. The following generics (R generic functions) are available
for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getFinalConfidenceInterval 83

Examples

Not run:
Calculate event probabilities for staggered subjects' entry, piecewisely defined
survival time and hazards, and plot it.
timeVector <- seq(0, 100, 1)
y <- getEventProbabilities(timeVector, accrualTime = c(0, 20, 60),

accrualIntensity = c(5, 20),
piecewiseSurvivalTime = c(0, 20, 80),
lambda2 = c(0.02, 0.06, 0.1),
hazardRatio = 2

)
plot(timeVector, y$cumulativeEventProbabilities, type = 'l')

End(Not run)

getFinalConfidenceInterval

Get Final Confidence Interval

Description

Returns the final confidence interval for the parameter of interest. It is based on the prototype case,
i.e., the test for testing a mean for normally distributed variables.

Usage

getFinalConfidenceInterval(
design,
dataInput,
...,
directionUpper = NA,
thetaH0 = NA_real_,
tolerance = 1e-06,
stage = NA_integer_

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further (optional) arguments to be passed:

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing
rates and the hazard ratio. For testing rates, if normalApproximation =
FALSE is specified, the binomial test (one sample) or the exact test of Fisher
(two samples) is used for calculating the p-values. In the survival setting,
normalApproximation = FALSE has no effect.

84 getFinalConfidenceInterval

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

stdErrorEstimate Estimate of standard error for calculation of final confi-
dence intervals for comparing rates in two treatment groups, default is
"pooled".

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

Depending on design and dataInput the final confidence interval and median unbiased estimate
that is based on the stage-wise ordering of the sample space will be calculated and returned. Addi-
tionally, a non-standardized ("general") version is provided, the estimated standard deviation must
be used to obtain the confidence interval for the parameter of interest.

For the inverse normal combination test design with more than two stages, a warning informs that
the validity of the confidence interval is theoretically shown only if no sample size change was
performed.

Value

Returns a list containing

• finalStage,

• medianUnbiased,

• finalConfidenceInterval,

• medianUnbiasedGeneral, and

• finalConfidenceIntervalGeneral.

getFinalPValue 85

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalPValue(), getRepeatedConfidenceIntervals(),
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalConfidenceInterval(design, dataInput = data)

End(Not run)

getFinalPValue Get Final P Value

Description

Returns the final p-value for given stage results.

Usage

getFinalPValue(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Only available for backward compatibility.

Details

The calculation of the final p-value is based on the stage-wise ordering of the sample space. This
enables the calculation for both the non-adaptive and the adaptive case. For Fisher’s combination
test, it is available for kMax = 2 only.

Value

Returns a list containing

• finalStage,

• pFinal.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

86 getGroupSequentialProbabilities

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getFinalPValue(getStageResults(design, dataInput = data))

End(Not run)

getGroupSequentialProbabilities

Get Group Sequential Probabilities

Description

Calculates probabilities in the group sequential setting.

Usage

getGroupSequentialProbabilities(decisionMatrix, informationRates)

Arguments

decisionMatrix A matrix with either 2 or 4 rows and kMax = length(informationRates) columns,
see details.

informationRates

The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

Details

Given a sequence of information rates (fixing the correlation structure), and decisionMatrix with
either 2 or 4 rows and kMax = length(informationRates) columns, this function calculates a proba-
bility matrix containing, for two rows, the probabilities:
P(Z_1 < l_1), P(l_1 < Z_1 < u_1, Z_2 < l_2),..., P(l_kMax-1 < Z_kMax-1 < u_kMax-1, Z_kMax <
l_l_kMax)
P(Z_1 < u_1), P(l_1 < Z_1 < u_1, Z_2 < u_2),..., P(l_kMax-1 < Z_kMax-1 < u_kMax-1, Z_kMax
< u_l_kMax)
P(Z_1 < Inf), P(l_1 < Z_1 < u_1, Z_2 < Inf),..., P(l_kMax-1 < Z_kMax-1 < u_kMax-1, Z_kMax <
Inf)
with continuation matrix
l_1,...,l_kMax
u_1,...,u_kMax
That is, the output matrix of the function provides per stage (column) the cumulative probabilities
for values specified in decisionMatrix and Inf, and reaching the stage, i.e., the test statistics is in the

getGroupSequentialProbabilities 87

continuation region for the preceding stages. For 4 rows, the continuation region contains of two
regions and the probability matrix is obtained analogously (cf., Wassmer and Brannath, 2016).

Value

Returns a numeric matrix containing the probabilities described in the details section.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal(), getPowerAndAverageSampleNumber()

Examples

Not run:
Calculate Type I error rates in the two-sided group sequential setting when
performing kMax stages with constant critical boundaries at level alpha:
alpha <- 0.05
kMax <- 10
decisionMatrix <- matrix(c(

rep(-qnorm(1 - alpha / 2), kMax),
rep(qnorm(1 - alpha / 2), kMax)

), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)
cumsum(probs[3,] - probs[2,] + probs[1,])

Do the same for a one-sided design without futility boundaries:
decisionMatrix <- matrix(c(

rep(-Inf, kMax),
rep(qnorm(1 - alpha), kMax)

), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)
cumsum(probs[3,] - probs[2,])

Check that two-sided Pampallona and Tsiatis boundaries with binding
futility bounds obtain Type I error probabilities equal to alpha:
x <- getDesignGroupSequential(

alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",
deltaPT0 = 0, deltaPT1 = 0.4, sided = 2, bindingFutility = TRUE

)
dm <- matrix(c(

-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, 0, x$criticalValues

), nrow = 4, byrow = TRUE)
dm[is.na(dm)] <- 0
probs <- getGroupSequentialProbabilities(

decisionMatrix = dm, informationRates = (1:3) / 3
)
sum(probs[5,] - probs[4,] + probs[1,])

Check the Type I error rate decrease when using non-binding futility bounds:
x <- getDesignGroupSequential(

alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",
deltaPT0 = 0, deltaPT1 = 0.4, sided = 2, bindingFutility = FALSE

)

88 getLambdaStepFunction

dm <- matrix(c(
-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, 0, x$criticalValues

), nrow = 4, byrow = TRUE)
dm[is.na(dm)] <- 0
probs <- getGroupSequentialProbabilities(

decisionMatrix = dm, informationRates = (1:3) / 3
)
sum(probs[5,] - probs[4,] + probs[1,])

End(Not run)

getLambdaStepFunction Get Lambda Step Function

Description

Calculates the lambda step values for a given time vector.

Usage

getLambdaStepFunction(timeValues, ..., piecewiseSurvivalTime, piecewiseLambda)

Arguments

timeValues A numeric vector that specifies the time values for which the lambda step values
shall be calculated.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

piecewiseSurvivalTime

A numeric vector that specifies the time intervals for the piecewise definition of
the exponential survival time cumulative distribution function (see details).

piecewiseLambda

A numeric vector that specifies the assumed hazard rate in the treatment group.

Details

The first element of the vector piecewiseSurvivalTime must be equal to 0. This function is used
for plotting of sample size survival results (cf., plot, type = 13 and type = 14).

Value

A numeric vector containing the lambda step values that corresponds to the specified time values.

getLogLevel 89

getLogLevel Get Log Level

Description

Returns the current rpact log level.

Usage

getLogLevel()

Details

This function gets the log level of the rpact internal log message system.

Value

Returns a character of length 1 specifying the current log level.

See Also

• setLogLevel() for setting the log level,

• resetLogLevel() for resetting the log level to default.

Examples

show current log level
getLogLevel()

getLongFormat Get Long Format

Description

Returns the specified dataset as a data.frame in so-called long format.

Usage

getLongFormat(dataInput)

Details

In the long format (narrow, stacked), the data are presented with one column containing all the
values and another column listing the context of the value, i.e., the data for the different groups are
in one column and the dataset contains an additional "group" column.

Value

A data.frame will be returned.

90 getNumberOfSubjects

See Also

getWideFormat() for returning the dataset as a data.frame in wide format.

getNumberOfSubjects Get Number Of Subjects

Description

Returns the number of recruited subjects at given time vector.

Usage

getNumberOfSubjects(
time,
...,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_

)

Arguments

time A numeric vector with time values.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

Calculate number of subjects over time range at given accrual time vector and accrual intensity.
Intensity can either be defined in absolute or relative terms (for the latter, maxNumberOfSubjects
needs to be defined)
The function is used by getSampleSizeSurvival().

getObservedInformationRates 91

Value

Returns a NumberOfSubjects object. The following generics (R generic functions) are available
for this result object:

• names() to obtain the field names,
• print() to print the object,
• summary() to display a summary of the object,
• plot() to plot the object,
• as.data.frame() to coerce the object to a data.frame,
• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

AccrualTime for defining the accrual time.

Examples

Not run:
getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),

accrualIntensity = c(5, 20))

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(0, 20, 60),
accrualIntensity = c(0.1, 0.4), maxNumberOfSubjects = 900)

End(Not run)

getObservedInformationRates

Get Observed Information Rates

Description

Recalculates the observed information rates from the specified dataset.

Usage

getObservedInformationRates(
dataInput,
...,
maxInformation = NULL,
informationEpsilon = NULL,
stage = NA_integer_

)

92 getObservedInformationRates

Arguments

dataInput The dataset for which the information rates shall be recalculated.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

maxInformation Positive value specifying the maximum information.
informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For means and rates the maximum information is the maximum number of subjects or the relative
proportion if informationEpsilon < 1; for survival data it is the maximum number of events or
the relative proportion if informationEpsilon < 1.

Value

Returns a list that summarizes the observed information rates.

See Also

• getAnalysisResults() for using getObservedInformationRates() implicit,

• www.rpact.org/vignettes/planning/rpact_boundary_update_example

Examples

Not run:
Absolute information epsilon:
decision rule 45 >= 46 - 1, i.e., under-running
data <- getDataset(

overallN = c(22, 45),
overallEvents = c(11, 28)

)
getObservedInformationRates(data,

maxInformation = 46, informationEpsilon = 1
)

Relative information epsilon:
last information rate = 45/46 = 0.9783,
is > 1 - 0.03 = 0.97, i.e., under-running
data <- getDataset(

overallN = c(22, 45),
overallEvents = c(11, 28)

)
getObservedInformationRates(data,

maxInformation = 46, informationEpsilon = 0.03

https://www.rpact.org/vignettes/planning/rpact_boundary_update_example/

getOutputFormat 93

)

End(Not run)

getOutputFormat Get Output Format

Description

With this function the format of the standard outputs of all rpact objects can be shown and written
to a file.

Usage

getOutputFormat(
parameterName = NA_character_,
...,
file = NA_character_,
default = FALSE,
fields = TRUE

)

Arguments

parameterName The name of the parameter whose output format shall be returned. Leave the
default NA_character_ if the output format of all parameters shall be returned.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

file An optional file name where to write the output formats (see Details for more
information).

default If TRUE the default output format of the specified parameter(s) will be returned,
default is FALSE.

fields If TRUE the names of all affected object fields will be displayed, default is TRUE.

Details

Output formats can be written to a text file by specifying a file. See setOutputFormat()() to
learn how to read a formerly saved file.

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

94 getParameterCaption

Value

A named list of output formats.

See Also

Other output formats: setOutputFormat()

Examples

Not run:
show output format of p values
getOutputFormat("p.value")

set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

End(Not run)

getParameterCaption Get Parameter Caption

Description

Returns the parameter caption for a given object and parameter name.

Usage

getParameterCaption(obj, var)

Arguments

obj The rpact result object.

var The variable/parameter name.

getParameterName 95

Details

This function identifies and returns the caption that will be used in print outputs of an rpact result
object.

Value

Returns a character of specifying the corresponding caption of a given parameter name. Returns
NULL if the specified parameterName does not exist.

See Also

getParameterName() for getting the parameter name for a given caption.

Examples

Not run:
getParameterCaption(getDesignInverseNormal(), "kMax")

End(Not run)

getParameterName Get Parameter Name

Description

Returns the parameter name for a given object and parameter caption.

Usage

getParameterName(obj, parameterCaption)

Arguments

obj The rpact result object.
parameterCaption

The parameter caption.

Details

This function identifies and returns the parameter name for a given caption that will be used in print
outputs of an rpact result object.

Value

Returns a character of specifying the corresponding name of a given parameter caption. Returns
NULL if the specified parameterCaption does not exist.

See Also

getParameterCaption() for getting the parameter caption for a given name.

96 getParameterType

Examples

Not run:
getParameterName(getDesignInverseNormal(), "Maximum number of stages")

End(Not run)

getParameterType Get Parameter Type

Description

Returns the parameter type for a given object and parameter name.

Usage

getParameterType(obj, var)

Arguments

obj The rpact result object.

var The variable/parameter name.

Details

This function identifies and returns the type that will be used in print outputs of an rpact result
object.

Value

Returns a character of specifying the corresponding type of a given parameter name. Returns
NULL if the specified parameterName does not exist.

See Also

getParameterName() for getting the parameter name for a given caption. getParameterCaption()
for getting the parameter caption for a given name.

Examples

Not run:
getParameterType(getDesignInverseNormal(), "kMax")

End(Not run)

getPerformanceScore 97

getPerformanceScore Get Performance Score

Description

Calculates the conditional performance score, its sub-scores and components according to (Her-
rmann et al. (2020), doi:10.1002/sim.8534) and (Bokelmann et al. (2024), doi:10.1186/s12874024-
021504) for a given simulation result from a two-stage design with continuous or binary endpoint.
Larger (sub-)score and component values refer to a better performance.

Usage

getPerformanceScore(simulationResult)

Arguments

simulationResult

A simulation result.

Details

The conditional performance score consists of two sub-scores, one for the sample size (subscore-
SampleSize) and one for the conditional power (subscoreConditionalPower). Each of those are
composed of a location (locationSampleSize, locationConditionalPower) and variation component
(variationSampleSize, variationConditionalPower). The term conditional refers to an evaluation
perspective where the interim results suggest a trial continuation with a second stage. The score can
take values between 0 and 1. More details on the performance score can be found in Herrmann et
al. (2020), doi:10.1002/sim.8534 and Bokelmann et al. (2024) doi:10.1186/s12874024021504.

Author(s)

Stephen Schueuerhuis

Examples

Not run:
Example from Table 3 in "A new conditional performance score for
the evaluation of adaptive group sequential designs with samplesize
recalculation from Herrmann et al 2023", p. 2097 for
Observed Conditional Power approach and Delta = 0.5

Create two-stage Pocock design with binding futility boundary at 0
design <- getDesignGroupSequential(

kMax = 2, typeOfDesign = "P",
futilityBounds = 0, bindingFutility = TRUE)

Initialize sample sizes and effect;
Sample sizes are referring to overall stage-wise sample sizes
n1 <- 100
n2 <- 100
nMax <- n1 + n2
alternative <- 0.5

https://doi.org/10.1002/sim.8534
https://doi.org/10.1186/s12874-024-02150-4
https://doi.org/10.1186/s12874-024-02150-4
https://doi.org/10.1002/sim.8534
https://doi.org/10.1186/s12874-024-02150-4

98 getPiecewiseSurvivalTime

Perform Simulation; nMax * 1.5 defines the maximum
sample size for the additional stage
simulationResult <- getSimulationMeans(

design = design,
normalApproximation = TRUE,
thetaH0 = 0,
alternative = alternative,
plannedSubjects = c(n1, nMax),
minNumberOfSubjectsPerStage = c(NA_real_, 1),
maxNumberOfSubjectsPerStage = c(NA_real_, nMax * 1.5),
conditionalPower = 0.8,
directionUpper = TRUE,
maxNumberOfIterations = 1e05,
seed = 140

)

Calculate performance score
getPerformanceScore(simulationResult)

End(Not run)

getPiecewiseSurvivalTime

Get Piecewise Survival Time

Description

Returns a PiecewiseSurvivalTime object that contains the all relevant parameters of an exponen-
tial survival time cumulative distribution function. Use names to obtain the field names.

Usage

getPiecewiseSurvivalTime(
piecewiseSurvivalTime = NA_real_,
...,
lambda1 = NA_real_,
lambda2 = NA_real_,
hazardRatio = NA_real_,
pi1 = NA_real_,
pi2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
eventTime = 12,
kappa = 1,
delayedResponseAllowed = FALSE

)

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

getPiecewiseSurvivalTime 99

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

delayedResponseAllowed

If TRUE, delayed response is allowed; otherwise it will be validated that the
response is not delayed, default is FALSE.

Value

Returns a PiecewiseSurvivalTime object. The following generics (R generic functions) are avail-
able for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

100 getPiecewiseSurvivalTime

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
getPiecewiseSurvivalTime(lambda2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(lambda2 = 0.5, lambda1 = 0.4)

getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(pi2 = 0.5, pi1 = 0.4)

getPiecewiseSurvivalTime(pi1 = 0.3)

getPiecewiseSurvivalTime(hazardRatio = c(0.6, 0.8), lambda2 = 0.4)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015),
lambda1 = c(0.025, 0.04, 0.015) * 0.8)

pwst <- getPiecewiseSurvivalTime(list(
"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
"15 - <21" = 0.01,
">=21" = 0.007), hazardRatio = 0.75)

pwst

The object created by getPiecewiseSurvivalTime() can be used directly in
getSampleSizeSurvival():
getSampleSizeSurvival(piecewiseSurvivalTime = pwst)

The object created by getPiecewiseSurvivalTime() can be used directly in
getPowerSurvival():
getPowerSurvival(piecewiseSurvivalTime = pwst, directionUpper = FALSE,

maxNumberOfEvents = 40, maxNumberOfSubjects = 100)

The object created by getPiecewiseSurvivalTime() can be used directly in
getSimulationSurvival():
getSimulationSurvival(piecewiseSurvivalTime = pwst, directionUpper = FALSE,

getPlotSettings 101

plannedEvents = 40, maxNumberOfSubjects = 100)

End(Not run)

getPlotSettings Get Plot Settings

Description

Returns a plot settings object.

Usage

getPlotSettings(
lineSize = 0.8,
pointSize = 3,
pointColor = NA_character_,
mainTitleFontSize = 14,
axesTextFontSize = 10,
legendFontSize = 11,
scalingFactor = 1

)

Arguments

lineSize The line size, default is 0.8.

pointSize The point size, default is 3.

pointColor The point color (character), default is NA_character_.

mainTitleFontSize

The main title font size, default is 14.

axesTextFontSize

The axes text font size, default is 10.

legendFontSize The legend font size, default is 11.

scalingFactor The scaling factor, default is 1.

Details

Returns an object of class PlotSettings that collects typical plot settings.

102 getPowerAndAverageSampleNumber

getPowerAndAverageSampleNumber

Get Power And Average Sample Number

Description

Returns the power and average sample number of the specified design.

Usage

getPowerAndAverageSampleNumber(design, theta = seq(-1, 1, 0.02), nMax = 100)

Arguments

design The trial design.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.

Details

This function returns the power and average sample number (ASN) of the specified design for
the prototype case which is testing H0: mu = mu0 in a one-sample design. theta represents the
standardized effect (mu - mu0) / sigma and power and ASN is calculated for maximum sample
size nMax. For other designs than the one-sample test of a mean the standardized effect needs to be
adjusted accordingly.

Value

Returns a PowerAndAverageSampleNumberResult object. The following generics (R generic func-
tions) are available for this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal(), getGroupSequentialProbabilities()

getPowerCounts 103

Examples

Not run:
Calculate power, stopping probabilities, and expected sample
size for the default design with specified theta and nMax
getPowerAndAverageSampleNumber(

getDesignGroupSequential(),
theta = seq(-1, 1, 0.5), nMax = 100)

End(Not run)

getPowerCounts Get Power Counts

Description

Returns the power, stopping probabilities, and expected sample size for testing mean rates for neg-
ative binomial distributed event numbers in two samples at given sample sizes.

Usage

getPowerCounts(
design = NULL,
...,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
thetaH0 = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

104 getPowerCounts

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambda1/lambda2
of a homogeneous Poisson process, there is no default.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime

If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accrualIntensity

If specified, the assumed accrual intensities for the study, there is no default.

followUpTime If specified, the assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

getPowerCounts 105

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size for testing the ratio of two mean rates of negative binomial distributed event numbers in two
samples at given maximum sample size and effect. The power calculation is performed either for
a fixed exposure time or a variable exposure time with fixed follow-up where the information over
the stages is calculated according to the specified information rate in the design. Additionally, an
allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups. A null hypothesis value thetaH0 can also be specified.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerMeans(), getPowerRates(), getPowerSurvival()

Examples

Not run:
Fixed sample size trial where a therapy is assumed to decrease the
exacerbation rate from 1.4 to 1.05 (25% decrease) within an
observation period of 1 year, i.e., each subject has a equal
follow-up of 1 year.
Calculate power at significance level 0.025 at given sample size = 180
for a range of lambda1 values if the overdispersion is assumed to be
equal to 0.5, is obtained by
getPowerCounts(alpha = 0.025, lambda1 = seq(1, 1.4, 0.05), lambda2 = 1.4,

maxNumberOfSubjects = 180, overdispersion = 0.5, fixedExposureTime = 1)

Group sequential alpha and beta spending function design with O'Brien and
Fleming type boundaries: Power and test characteristics for N = 286,
under the assumption of a fixed exposure time, and for a range of
lambda1 values:
getPowerCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2,
typeOfDesign = "asOF", typeBetaSpending = "bsOF"),

106 getPowerMeans

lambda1 = seq(0.17, 0.23, 0.01), lambda2 = 0.3,
directionUpper = FALSE, overdispersion = 1, maxNumberOfSubjects = 286,
fixedExposureTime = 12, accrualTime = 6)

Group sequential design alpha spending function design with O'Brien and
Fleming type boundaries: Power and test characteristics for N = 1976,
under variable exposure time with uniform recruitment over 1.25 months,
study time (accrual + followup) = 4 (lambda1, lambda2, and overdispersion
as specified, no futility stopping):
getPowerCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2, typeOfDesign = "asOF"),
lambda1 = seq(0.08, 0.09, 0.0025), lambda2 = 0.125,
overdispersion = 5, directionUpper = FALSE, maxNumberOfSubjects = 1976,
followUpTime = 2.75, accrualTime = 1.25)

End(Not run)

getPowerMeans Get Power Means

Description

Returns the power, stopping probabilities, and expected sample size for testing means in one or two
samples at given maximum sample size.

Usage

getPowerMeans(
design = NULL,
...,
groups = 2L,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0, 1, 0.2),
stDev = 1,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

getPowerMeans 107

normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. For two-armed trials, it is allowed to specify the standard
deviations separately, i.e., as vector with two elements. If meanRatio = TRUE is
specified, stDev defines the coefficient of variation sigma / mu2.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size
for testing means at given sample size. In a two treatment groups design, additionally, an allocation

108 getPowerMeans

ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two treatment
groups. A null hypothesis value thetaH0 != 0 for testing the difference of two means or thetaH0 !=
1 for testing the ratio of two means can be specified. For the specified sample size, critical bounds
and stopping for futility bounds are provided at the effect scale (mean, mean difference, or mean
ratio, respectively)

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerRates(), getPowerSurvival()

Examples

Not run:
Calculate the power, stopping probabilities, and expected sample size
for testing H0: mu1 - mu2 = 0 in a two-armed design against a range of
alternatives H1: mu1 - m2 = delta, delta = (0, 1, 2, 3, 4, 5),
standard deviation sigma = 8, maximum sample size N = 80 (both treatment
arms), and an allocation ratio n1/n2 = 2. The design is a three stage
O'Brien & Fleming design with non-binding futility bounds (-0.5, 0.5)
for the two interims. The computation takes into account that the t test
is used (normalApproximation = FALSE).
getPowerMeans(getDesignGroupSequential(alpha = 0.025,

sided = 1, futilityBounds = c(-0.5, 0.5)),
groups = 2, alternative = c(0:5), stDev = 8,
normalApproximation = FALSE, maxNumberOfSubjects = 80,
allocationRatioPlanned = 2)

End(Not run)

getPowerRates 109

getPowerRates Get Power Rates

Description

Returns the power, stopping probabilities, and expected sample size for testing rates in one or two
samples at given maximum sample size.

Usage

getPowerRates(
design = NULL,
...,
groups = 2L,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = 0.2,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

riskRatio If TRUE, the power for one-sided testing of H0: pi1 / pi2 = thetaH0 is calcu-
lated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

110 getPowerRates

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size
for testing rates at given maximum sample size. The sample sizes over the stages are calculated
according to the specified information rate in the design. In a two treatment groups design, addi-
tionally, an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects
in the two treatment groups. If a null hypothesis value thetaH0 != 0 for testing the difference of
two rates or thetaH0 != 1 for testing the risk ratio is specified, the formulas according to Farring-
ton & Manning (Statistics in Medicine, 1990) are used (only one-sided testing). Critical bounds
and stopping for futility bounds are provided at the effect scale (rate, rate difference, or rate ratio,
respectively). For the two-sample case, the calculation here is performed at fixed pi2 as given as
argument in the function. Note that the power calculation for rates is always based on the normal
approximation.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

getPowerSurvival 111

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerMeans(), getPowerSurvival()

Examples

Not run:
Calculate the power, stopping probabilities, and expected sample size in a
two-armed design at given maximum sample size N = 200 in a three-stage
O'Brien & Fleming design with information rate vector (0.2,0.5,1),
non-binding futility boundaries (0,0), i.e., the study stops for futility
if the p-value exceeds 0.5 at interm, and allocation ratio = 2 for a range
of pi1 values when testing H0: pi1 - pi2 = -0.1:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5, 1),

futilityBounds = c(0, 0)), groups = 2, thetaH0 = -0.1,
pi1 = seq(0.3, 0.6, 0.1), directionUpper = FALSE,
pi2 = 0.7, allocationRatioPlanned = 2, maxNumberOfSubjects = 200)

Calculate the power, stopping probabilities, and expected sample size in a single
arm design at given maximum sample size N = 60 in a three-stage two-sided
O'Brien & Fleming design with information rate vector (0.2, 0.5,1)
for a range of pi1 values when testing H0: pi = 0.3:
getPowerRates(getDesignGroupSequential(informationRates = c(0.2, 0.5,1),

sided = 2), groups = 1, thetaH0 = 0.3, pi1 = seq(0.3, 0.5, 0.05),
maxNumberOfSubjects = 60)

End(Not run)

getPowerSurvival Get Power Survival

Description

Returns the power, stopping probabilities, and expected sample size for testing the hazard ratio in a
two treatment groups survival design.

Usage

getPowerSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
directionUpper = NA,
pi1 = NA_real_,

112 getPowerSurvival

pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = 1,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
maxNumberOfSubjects = NA_real_,
maxNumberOfEvents = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

getPowerSurvival 113

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

114 getPowerSurvival

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

maxNumberOfEvents

maxNumberOfEvents > 0 is the maximum number of events, it determines the
power of the test and needs to be specified.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size at given number of events and number of subjects. It also calculates the time when the re-
quired events are expected under the given assumptions (exponentially, piecewise exponentially, or
Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.

getPowerSurvival 115

accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerMeans(), getPowerRates()

Examples

Not run:
Fixed sample size with minimum required definitions, pi1 = c(0.2, 0.3, 0.4, 0.5) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default
getPowerSurvival(maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.2, 0.3, 0.4, 0.5) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getPowerSurvival(design = getDesignGroupSequential(kMax = 4),

maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0),

accrualIntensity = 30, maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6),

accrualIntensity = c(20, 30), maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects per
time unit can be recruited, and after 10 time units 30 subjects per time unit

116 getPowerSurvival

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = c(0, 6, 10),
accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getPowerSurvival(maxNumberOfEvents = 40, accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time, directionUpper = FALSE
needs to be specified because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), pi1 = 0.2, pi2 = 0.3,

eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on event rate at specified event time for the reference group
and hazard ratio, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

pi2 = 0.3, eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on hazard rate for the reference group and hazard ratio,
directionUpper = FALSE needs to be specified because it should be shown that
hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential(kMax = 2), hazardRatio = 0.5,

lambda2 = 0.02, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Specification of piecewise exponential survival time and hazard ratios
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = c(1.5, 1.8, 2), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time for both treatment arms
getPowerSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015,0.03,0.06), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as a list
pws <- list(

getRawData 117

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specify effect size based on median survival times
getPowerSurvival(median1 = 5, median2 = 3,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Specify effect size based on median survival times of
Weibull distribtion with kappa = 2
getPowerSurvival(median1 = 5, median2 = 3, kappa = 2,

maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

End(Not run)

getRawData Get Simulation Raw Data for Survival

Description

Returns the raw survival data which was generated for simulation.

Usage

getRawData(x, aggregate = FALSE)

Arguments

x A SimulationResults object created by getSimulationSurvival().

aggregate Logical. If TRUE the raw data will be aggregated similar to the result of getData(),
default is FALSE.

Details

This function works only if getSimulationSurvival() was called with a
maxNumberOfRawDatasetsPerStage > 0 (default is 0).

This function can be used to get the simulated raw data from a simulation results object obtained
by getSimulationSurvival(). Note that getSimulationSurvival() must called before with
maxNumberOfRawDatasetsPerStage > 0. The data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stopStage: The stage of stopping.

3. subjectId: The subject id (increasing number 1, 2, 3, ...)

4. accrualTime: The accrual time, i.e., the time when the subject entered the trial.

5. treatmentGroup: The treatment group number (1 or 2).

6. survivalTime: The survival time of the subject.

7. dropoutTime: The dropout time of the subject (may be NA).

118 getRepeatedConfidenceIntervals

8. lastObservationTime: The specific observation time.

9. timeUnderObservation: The time under observation is defined as follows:

if (event == TRUE) {
timeUnderObservation <- survivalTime

} else if (dropoutEvent == TRUE) {
timeUnderObservation <- dropoutTime

} else {
timeUnderObservation <- lastObservationTime - accrualTime

}

10. event: TRUE if an event occurred; FALSE otherwise.

11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

Value

Returns a data.frame.

Examples

Not run:
results <- getSimulationSurvival(

pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50, maxNumberOfRawDatasetsPerStage = 5

)
rawData <- getRawData(results)
head(rawData)
dim(rawData)

End(Not run)

getRepeatedConfidenceIntervals

Get Repeated Confidence Intervals

Description

Calculates and returns the lower and upper limit of the repeated confidence intervals of the trial.

Usage

getRepeatedConfidenceIntervals(
design,
dataInput,
...,
directionUpper = NA,
tolerance = 1e-06,
stage = NA_integer_

)

getRepeatedConfidenceIntervals 119

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further arguments to be passed to methods (cf., separate functions in "See Also"
below), e.g.,

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

The repeated confidence interval at a given stage of the trial contains the parameter values that are
not rejected using the specified sequential design. It can be calculated at each stage of the trial and
can thus be used as a monitoring tool.

The repeated confidence intervals are provided up to the specified stage.

120 getRepeatedPValues

Value

Returns a matrix with 2 rows and kMax columns containing the lower RCI limits in the first row
and the upper RCI limits in the second row, where each column represents a stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedConfidenceIntervals(design, dataInput = data)

End(Not run)

getRepeatedPValues Get Repeated P Values

Description

Calculates the repeated p-values for a given test results.

Usage

getRepeatedPValues(stageResults, ..., tolerance = 1e-06)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

Details

The repeated p-value at a given stage of the trial is defined as the smallest significance level under
which at given test design the test results obtain rejection of the null hypothesis. It can be calculated
at each stage of the trial and can thus be used as a monitoring tool.

The repeated p-values are provided up to the specified stage.

In multi-arm trials, the repeated p-values are defined separately for each treatment comparison
within the closed testing procedure.

getSampleSizeCounts 121

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each
column represents a stage, each row a comparison) containing the repeated p values.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getRepeatedPValues(getStageResults(design, dataInput = data))

End(Not run)

getSampleSizeCounts Get Sample Size Counts

Description

Returns the sample size for testing the ratio of mean rates of negative binomial distributed event
numbers in two samples at given effect.

Usage

getSampleSizeCounts(
design = NULL,
...,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
thetaH0 = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
maxNumberOfSubjects = NA_integer_,
allocationRatioPlanned = NA_real_

)

122 getSampleSizeCounts

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambda1/lambda2
of a homogeneous Poisson process, there is no default.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime

If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accrualIntensity

If specified, the assumed accrual intensities for the study, there is no default.
followUpTime If specified, the assumed (additional) follow-up time for the study, there is no

default. The total study duration is accrualTime + followUpTime.
maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

getSampleSizeCounts 123

Details

At given design the function calculates the information, and stage-wise and maximum sample size
for testing mean rates of negative binomial distributed event numbers in two samples at given effect.
The sample size calculation is performed either for a fixed exposure time or a variable exposure
time with fixed follow-up. For the variable exposure time case, at given maximum sample size the
necessary follow-up time is calculated. The planned calendar time of interim stages is calculated if
an accrual time is defined. Additionally, an allocation ratio = n1 / n2 can be specified where n1 and
n2 are the number of subjects in the two treatment groups. A null hypothesis value thetaH0 can
also be specified.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeMeans(), getSampleSizeRates(), getSampleSizeSurvival()

Examples

Not run:
Fixed sample size trial where a therapy is assumed to decrease the
exacerbation rate from 1.4 to 1.05 (25% decrease) within an observation
period of 1 year, i.e., each subject has an equal follow-up of 1 year.
The sample size that yields 90% power at significance level 0.025 for
detecting such a difference, if the overdispersion is assumed to be
equal to 0.5, is obtained by
getSampleSizeCounts(alpha = 0.025, beta = 0.1, lambda2 = 1.4,

theta = 0.75, overdispersion = 0.5, fixedExposureTime = 1)

Noninferiority test with blinded sample size reassessment to reproduce
Table 2 from Friede and Schmidli (2010):
getSampleSizeCounts(alpha = 0.025, beta = 0.2, lambda = 1, theta = 1,

thetaH0 = 1.15, overdispersion = 0.4, fixedExposureTime = 1)

Group sequential alpha and beta spending function design with O'Brien and
Fleming type boundaries: Estimate observation time under uniform

124 getSampleSizeMeans

recruitment of patients over 6 months and a fixed exposure time of 12
months (lambda1, lambda2, and overdispersion as specified):
getSampleSizeCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2,
typeOfDesign = "asOF", typeBetaSpending = "bsOF"),

lambda1 = 0.2, lambda2 = 0.3, overdispersion = 1,
fixedExposureTime = 12, accrualTime = 6)

Group sequential alpha spending function design with O'Brien and Fleming
type boundaries: Sample size for variable exposure time with uniform
recruitment over 1.25 months and study time (accrual + followup) = 4
(lambda1, lambda2, and overdispersion as specified, no futility stopping):
getSampleSizeCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2, typeOfDesign = "asOF"),
lambda1 = 0.0875, lambda2 = 0.125, overdispersion = 5,
followUpTime = 2.75, accrualTime = 1.25)

End(Not run)

getSampleSizeMeans Get Sample Size Means

Description

Returns the sample size for testing means in one or two samples.

Usage

getSampleSizeMeans(
design = NULL,
...,
groups = 2L,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0.2, 1, 0.2),
stDev = 1,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

getSampleSizeMeans 125

meanRatio If TRUE, the sample size for one-sided testing of H0: mu1 / mu2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. For two-armed trials, it is allowed to specify the standard
deviations separately, i.e., as vector with two elements. If meanRatio = TRUE is
specified, stDev defines the coefficient of variation sigma / mu2.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise and maximum sample size for testing means.
In a two treatment groups design, additionally, an allocation ratio = n1 / n2 can be specified where
n1 and n2 are the number of subjects in the two treatment groups. A null hypothesis value thetaH0
!= 0 for testing the difference of two means or thetaH0 != 1 for testing the ratio of two means can
be specified. Critical bounds and stopping for futility bounds are provided at the effect scale (mean,
mean difference, or mean ratio, respectively) for each sample size calculation separately.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

126 getSampleSizeRates

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeRates(), getSampleSizeSurvival()

Examples

Not run:
Calculate sample sizes in a fixed sample size parallel group design
with allocation ratio \code{n1 / n2 = 2} for a range of
alternative values 1, ..., 5 with assumed standard deviation = 3.5;
two-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(alpha = 0.05, beta = 0.1, sided = 2, groups = 2,

alternative = seq(1, 5, 1), stDev = 3.5, allocationRatioPlanned = 2)

Calculate sample sizes in a three-stage Pocock paired comparison design testing
H0: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviation = 3.5; one-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential(typeOfDesign = "P", alpha = 0.05,

sided = 1, beta = 0.1), groups = 1, thetaH0 = 2,
alternative = seq(3, 5, 1), stDev = 3.5)

Calculate sample sizes in a three-stage Pocock two-armed design testing
H0: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviations = 3 and 4, respectively, in the two groups of observations;
one-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential(typeOfDesign = "P", alpha = 0.05,

sided = 1, beta = 0.1), groups = 2,
alternative = seq(3, 5, 1), stDev = c(3, 4))

End(Not run)

getSampleSizeRates Get Sample Size Rates

Description

Returns the sample size for testing rates in one or two samples.

Usage

getSampleSizeRates(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,

getSampleSizeRates 127

conservative = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = c(0.4, 0.5, 0.6),
pi2 = 0.2,
allocationRatioPlanned = NA_real_

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

If FALSE, the sample size for the case of one treatment group is calculated exactly
using the binomial distribution, default is TRUE.

conservative For the case of one treatment group and normalApproximation = FALSE, if
TRUE, the sample size is calculated such that for larger sample size than the
calculated, the power is larger than 1 - beta, for conservative = FALSE, the
minimum sample size, for which power exceeds 1 - beta is calculated, default is
TRUE.

riskRatio If TRUE, the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 is
calculated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

128 getSampleSizeRates

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise and maximum sample size for testing rates.
In a two treatment groups design, additionally, an allocation ratio = n1 / n2 can be specified where
n1 and n2 are the number of subjects in the two treatment groups. If a null hypothesis value thetaH0
!= 0 for testing the difference of two rates or thetaH0 != 1 for testing the risk ratio is specified,
the sample size formula according to Farrington & Manning (Statistics in Medicine, 1990) is used.
Critical bounds and stopping for futility bounds are provided at the effect scale (rate, rate difference,
or rate ratio, respectively) for each sample size calculation separately. For the two-sample case, the
calculation here is performed at fixed pi2 as given as argument in the function.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeMeans(), getSampleSizeSurvival()

Examples

Not run:
Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 - pi2 = -0.1 within a two-stage O'Brien & Fleming design;
alpha = 0.05 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 2, alpha = 0.05,

beta = 0.1), groups = 2, thetaH0 = -0.1, pi1 = seq(0.4, 0.55, 0.025),
pi2 = 0.4, allocationRatioPlanned = 0)

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pi1 values when testing
H0: pi1 / pi2 = 0.80 within a three-stage O'Brien & Fleming design;

getSampleSizeSurvival 129

alpha = 0.025 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential(kMax = 3, alpha = 0.025,

beta = 0.1), groups = 2, riskRatio = TRUE, thetaH0 = 0.80,
pi1 = seq(0.3, 0.5, 0.025), pi2 = 0.3, allocationRatioPlanned = 0)

End(Not run)

getSampleSizeSurvival Get Sample Size Survival

Description

Returns the sample size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSampleSizeSurvival(
design = NULL,
...,
typeOfComputation = c("Schoenfeld", "Freedman", "HsiehFreedman"),
thetaH0 = 1,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
kappa = 1,
hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = NA_real_,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
followUpTime = NA_real_,
maxNumberOfSubjects = NA_real_,
dropoutRate1 = 0,
dropoutRate2 = 0,
dropoutTime = 12

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

130 getSampleSizeSurvival

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

getSampleSizeSurvival 131

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

followUpTime The assumed (additional) follow-up time for the study, default is 6. The total
study duration is accrualTime + followUpTime.

maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the follow-up time for the required
number of events is determined.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the number of events and an estimate for the necessary num-
ber of subjects for testing the hazard ratio in a survival design. It also calculates the time when the
required events are expected under the given assumptions (exponentially, piecewise exponentially,
or Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

Optional argument accountForObservationTimes: if accountForObservationTimes = TRUE, the
number of subjects is calculated assuming specific accrual and follow-up time, default is TRUE.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Optional argument accountForObservationTimes: if accountForObservationTimes = FALSE,
only the event rates are used for the calculation of the maximum number of subjects.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

132 getSampleSizeSurvival

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeMeans(), getSampleSizeRates()

getSampleSizeSurvival 133

Examples

Not run:
Fixed sample size trial with median survival 20 vs. 30 months in treatment and
reference group, respectively, alpha = 0.05 (two-sided), and power 1 - beta = 90%.
20 subjects will be recruited per month up to 400 subjects, i.e., accrual time
is 20 months.
getSampleSizeSurvival(alpha = 0.05, sided = 2, beta = 0.1, lambda1 = log(2) / 20,

lambda2 = log(2) / 30, accrualTime = c(0,20), accrualIntensity = 20)

Fixed sample size with minimum required definitions, pi1 = c(0.4,0.5,0.6) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default,
only alpha = 0.01 is specified
getSampleSizeSurvival(alpha = 0.01)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pi1 = c(0.4,0.5,0.6) and pi2 = 0.2 at event time 12,
accrual time 12 and follow-up time 6 as default
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 4))

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getSampleSizeSurvival(accrualTime = c(0), accrualIntensity = c(30),

maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6), accrualIntensity = c(20, 30),

maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects
per time unit can be recruited, and after 10 time units 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(0, 6, 10), accrualIntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30)

getSampleSizeSurvival(accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30)

getSampleSizeSurvival(accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time
needs to be specified because it should be shown that hazard ratio < 1
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

pi1 = 0.2, pi2 = 0.3, eventTime = 24)

Effect size is based on event rate at specified event
time for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, pi2 = 0.3, eventTime = 24)

134 getSimulationCounts

Effect size is based on hazard rate for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

hazardRatio = 0.5, lambda2 = 0.02)

Specification of piecewise exponential survival time and hazard ratios
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time as a list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time for both treatment arms
getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),

piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06))

Specification of piecewise exponential survival time as a list
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential(kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specify effect size based on median survival times
getSampleSizeSurvival(median1 = 5, median2 = 3)

Specify effect size based on median survival times of Weibull distribtion with
kappa = 2
getSampleSizeSurvival(median1 = 5, median2 = 3, kappa = 2)

Identify minimal and maximal required subjects to
reach the required events in spite of dropouts
getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),

lambda2 = 0.4, lambda1 = 0.3, followUpTime = Inf, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

getSampleSizeSurvival(accrualTime = c(0, 18), accrualIntensity = c(20, 30),
lambda2 = 0.4, lambda1 = 0.3, followUpTime = 0, dropoutRate1 = 0.001,
dropoutRate2 = 0.005)

End(Not run)

getSimulationCounts Get Simulation Counts

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing mean rates for negative binomial distributed event numbers in the two treatment groups

getSimulationCounts 135

testing situation.

Usage

getSimulationCounts(
design = NULL,
...,
plannedCalendarTime = NA_real_,
maxNumberOfSubjects = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
directionUpper = NA,
thetaH0 = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
allocationRatioPlanned = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

plannedCalendarTime

For simulating count data, the time points where an analysis is planned to be
performed. Should be a vector of length kMax

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambda1/lambda2
of a homogeneous Poisson process, there is no default.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

136 getSimulationCounts

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime

If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accrualIntensity

If specified, the assumed accrual intensities for the study, there is no default.

followUpTime If specified, the assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 and a null hypothesis value thetaH0 can be specified.

getSimulationCounts 137

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. lambda1: The assumed or derived event rate in the treatment group.

4. lambda2: The assumed or derived event rate in the control group.

5. accrualTime: The assumed accrualTime.

6. followUpTime: The assumed followUpTime.

7. overdispersion: The assumed overdispersion.

8. fixedFollowUp: The assumed fixedFollowUp.

9. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

10. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

11. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

12. testStatistic: The test statistic that is used for the test decision

13. estimatedLambda1: The estimated rate in treatment group 1.

14. estimatedLambda2: The estimated rate in treatment group 2.

15. estimatedOverdispersion: The estimated overdispersion.

16. infoAnalysis: The Fisher information at interim stage.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. conditionalPowerAchieved: Not yet available

138 getSimulationEnrichmentMeans

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Fixed sample size design with two groups, fixed exposure time
getSimulationCounts(

theta = 1.8,
lambda2 = 0.2,
maxNumberOfSubjects = 200,
plannedCalendarTime = 8,
maxNumberOfIterations = 1000,
fixedExposureTime = 6,
accrualTime = 3,
overdispersion = 2)

Group sequential design alpha spending function design with O'Brien and
Fleming type boundaries: Power and test characteristics for N = 264,
under variable exposure time with uniform recruitment over 1.25 months,
study time (accrual + followup) = 4, interim analysis take place after
equidistant time points (lambda1, lambda2, and overdispersion as specified,
no futility stopping):
dOF <- getDesignGroupSequential(

kMax = 3,
alpha = 0.025,
beta = 0.2,
typeOfDesign = "asOF")

getSimulationCounts(design = dOF,
lambda1 = seq(0.04, 0.12, 0.02),
lambda2 = 0.12,
directionUpper = FALSE,
overdispersion = 5,
plannedCalendarTime = (1:3)/3*4,
maxNumberOfSubjects = 264,
followUpTime = 2.75,
accrualTime = 1.25,
maxNumberOfIterations = 1000)

End(Not run)

getSimulationEnrichmentMeans

Get Simulation Enrichment Means

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size or testing means in an enrichment design testing situation.

getSimulationEnrichmentMeans 139

Usage

getSimulationEnrichmentMeans(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_integer_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-

140 getSimulationEnrichmentMeans

fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both

getSimulationEnrichmentMeans 141

treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and
survival), stDevH1 (for means), overallEffects, and for rates additionally:
piTreatmentsH1, piControlH1, overallRates, and overallRatesControl
(see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities, and
expected sample size at given number of subjects, parameter configuration, and population selection
rule in the enrichment situation. An allocation ratio can be specified referring to the ratio of number
of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedPopulations,

142 getSimulationEnrichmentMeans

plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a population selection strategy with one subset population.
If the subset is better than the full population, then the subset
is selected for the second stage, otherwise the full. Print and plot
design characteristics.

Define design
designIN <- getDesignInverseNormal(kMax = 2)

Define subgroups and their prevalences
subGroups <- c("S", "R") # fixed names!
prevalences <- c(0.2, 0.8)

Define effect matrix and variability
effectR <- 0.2
m <- c()
for (effectS in seq(0, 0.5, 0.25)) {

m <- c(m, effectS, effectR)
}
effects <- matrix(m, byrow = TRUE, ncol = 2)
stDev <- c(0.4, 0.8)

Define effect list
effectList <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation
simResultsPE <- getSimulationEnrichmentMeans(design = designIN,

effectList = effectList, plannedSubjects = c(50, 100),

getSimulationEnrichmentMeans 143

maxNumberOfIterations = 100)
print(simResultsPE)

Assess the design characteristics of a user defined selection
strategy in a three-stage design with no interim efficacy stop
using the inverse normal method for combining the stages.
Only the second interim is used for a selecting of a study
population. There is a small probability for stopping the trial
at the first interim.

Define design
designIN2 <- getDesignInverseNormal(typeOfDesign = "noEarlyEfficacy", kMax = 3)

Define selection function
mySelection <- function(effectVector, stage) {

selectedPopulations <- rep(TRUE, 3)
if (stage == 2) {

selectedPopulations <- (effectVector >= c(1, 2, 3))
}
return(selectedPopulations)

}

Define subgroups and their prevalences
subGroups <- c("S1", "S12", "S2", "R") # fixed names!
prevalences <- c(0.2, 0.3, 0.4, 0.1)

effectR <- 1.5
effectS12 = 5
m <- c()
for (effectS1 in seq(0, 5, 1)) {

for (effectS2 in seq(0, 5, 1)) {
m <- c(m, effectS1, effectS12, effectS2, effectR)

}
}
effects <- matrix(m, byrow = TRUE, ncol = 4)
stDev <- 10

Define effect list
effectList <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation
simResultsPE <- getSimulationEnrichmentMeans(

design = designIN2,
effectList = effectList,
typeOfSelection = "userDefined",
selectPopulationsFunction = mySelection,
intersectionTest = "Simes",
plannedSubjects = c(50, 100, 150),
maxNumberOfIterations = 100)

print(simResultsPE)
if (require(ggplot2)) plot(simResultsPE, type = 3)

End(Not run)

144 getSimulationEnrichmentRates

getSimulationEnrichmentRates

Get Simulation Enrichment Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in an enrichment design testing situation.

Usage

getSimulationEnrichmentRates(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
directionUpper = NA,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piTreatmentH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

getSimulationEnrichmentRates 145

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it

146 getSimulationEnrichmentRates

can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piTreatmentH1 If specified, the assumed probabilities in the active arm under which the sample
size recalculation was performed and the conditional power was calculated.

piControlH1 If specified, the assumed probabilities in the control arm under which the sample
size recalculation was performed and the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and
survival), stDevH1 (for means), overallEffects, and for rates additionally:
piTreatmentsH1, piControlH1, overallRates, and overallRatesControl
(see examples).

getSimulationEnrichmentRates 147

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of piTreatmentH1 and/or piControlH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedPopulations,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRatesTreatment,
overallRatesControl, piTreatmentH1, and piControlH1. The function has to contain the three-
dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a population selection strategy with two subset populations and
a binary endpoint using a stratified analysis. No early efficacy stop,
weighted inverse normal method with weight sqrt(0.4).
pi2 <- c(0.3, 0.4, 0.3, 0.55)
pi1Seq <- seq(0.0, 0.2, 0.2)
pi1 <- matrix(rep(pi1Seq, length(pi2)), ncol = length(pi1Seq), byrow = TRUE) + pi2
effectList <- list(

subGroups = c("S1", "S2", "S12", "R"),
prevalences = c(0.1, 0.4, 0.2, 0.3),

148 getSimulationEnrichmentSurvival

piControl = pi2,
piTreatments = expand.grid(pi1[1,], pi1[2,], pi1[3,], pi1[4,])

)
design <- getDesignInverseNormal(informationRates = c(0.4, 1),

typeOfDesign = "noEarlyEfficacy")
simResultsPE <- getSimulationEnrichmentRates(design,

plannedSubjects = c(150, 300),
allocationRatioPlanned = 1.5, directionUpper = TRUE,
effectList = effectList, stratifiedAnalysis = TRUE,
intersectionTest = "Sidak",
typeOfSelection = "epsilon", epsilonValue = 0.025,
maxNumberOfIterations = 100)

print(simResultsPE)

End(Not run)

getSimulationEnrichmentSurvival

Get Simulation Enrichment Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in an enrichment design testing situation. In contrast to
getSimulationSurvival() (where survival times are simulated), normally distributed logrank test
statistics are simulated.

Usage

getSimulationEnrichmentSurvival(
design = NULL,
...,
effectList = NULL,
intersectionTest = c("Simes", "SpiessensDebois", "Bonferroni", "Sidak"),
stratifiedAnalysis = TRUE,
directionUpper = NA,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,

getSimulationEnrichmentSurvival 149

calcEventsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

150 getSimulationEnrichmentSurvival

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

getSimulationEnrichmentSurvival 151

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and
survival), stDevH1 (for means), overallEffects, and for rates additionally:
piTreatmentsH1, piControlH1, overallRates, and overallRatesControl
(see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected event number at given number of events, parameter configuration, and population
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment group as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedPopulations,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a population selection strategy with one subset population and
a survival endpoint. The considered situations are defined through the
event rates yielding a range of hazard ratios in the subsets. Design

152 getSimulationMeans

with O'Brien and Fleming alpha spending and a reassessment of event
number in the first interim based on conditional power and assumed
hazard ratio using weighted inverse normal combination test.

subGroups <- c("S", "R")
prevalences <- c(0.40, 0.60)

p2 <- c(0.3, 0.4)
range1 <- p2[1] + seq(0, 0.3, 0.05)

p1 <- c()
for (x1 in range1) {

p1 <- c(p1, x1, p2[2] + 0.1)
}
hazardRatios <- log(matrix(1 - p1, byrow = TRUE, ncol = 2)) /

matrix(log(1 - p2), byrow = TRUE, ncol = 2,
nrow = length(range1))

effectList <- list(subGroups=subGroups, prevalences=prevalences,
hazardRatios = hazardRatios)

design <- getDesignInverseNormal(informationRates = c(0.3, 0.7, 1),
typeOfDesign = "asOF")

simResultsPE <- getSimulationEnrichmentSurvival(design,
plannedEvents = c(40, 90, 120),
effectList = effectList,
typeOfSelection = "rbest", rValue = 2,
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA, 50, 30),
maxNumberOfEventsPerStage = c(NA, 150, 30), thetaH1 = 4 / 3,
maxNumberOfIterations = 100)

print(simResultsPE)

End(Not run)

getSimulationMeans Get Simulation Means

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing means in a one or two treatment groups testing situation.

Usage

getSimulationMeans(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,
meanRatio = FALSE,
thetaH0 = ifelse(meanRatio, 1, 0),
alternative = seq(0, 1, 0.2),

getSimulationMeans 153

stDev = 1,
plannedSubjects = NA_real_,
directionUpper = NA,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is TRUE, i.e., normally dis-
tributed test statistics are generated. If FALSE, the t test is used for calculating
the p-values, i.e., t distributed test statistics are generated.

meanRatio If TRUE, the design characteristics for one-sided testing of H0: mu1 / mu2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(0, 1, 0.2).

stDev The standard deviation under which the data is simulated, default is 1. For two-
armed trials, it is allowed to specify the standard deviations separately, i.e., as
vector with two elements. If meanRatio = TRUE is specified, stDev defines the
coefficient of variation sigma / mu2.

154 getSimulationMeans

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

getSimulationMeans 155

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfSubjectsPerStage,
and maxNumberOfSubjectsPerStage (or calcSubjectsFunction) are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, meanRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
thetaH1, and stDevH1. The function has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationMeans(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationMeans(plannedSubjects = 40)

156 getSimulationMeans

simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. alternative: The alternative hypothesis value.

4. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

5. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

6. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

7. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher’s combination test).

8. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

9. effectEstimate: Overall simulated standardized effect estimate.

10. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

11. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Fixed sample size design with two groups, total sample size 40,
alternative = c(0, 0.2, 0.4, 0.8, 1), and standard deviation = 1 (the default)
getSimulationMeans(plannedSubjects = 40, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results
with power calculator using normal approximation
getSimulationMeans(

alternative = 0:4, stDev = 5,
plannedSubjects = 40, maxNumberOfIterations = 1000

)
getPowerMeans(

alternative = 0:4, stDev = 5,
maxNumberOfSubjects = 40, normalApproximation = TRUE

)

Do the same for a three-stage O'Brien&Fleming inverse

getSimulationMeans 157

normal group sequential design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "OF", futilityBounds = c(0, 0))
x <- getSimulationMeans(designIN,

alternative = c(0:4), stDev = 5,
plannedSubjects = c(20, 40, 60), maxNumberOfIterations = 1000

)
getPowerMeans(designIN,

alternative = 0:4, stDev = 5,
maxNumberOfSubjects = 60, normalApproximation = TRUE

)

Assess power and average sample size if a sample size increase is foreseen
at conditional power 80% for each subsequent stage based on observed overall
effect and specified minNumberOfSubjectsPerStage and
maxNumberOfSubjectsPerStage
getSimulationMeans(designIN,

alternative = 0:4, stDev = 5,
plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 80, 80),
conditionalPower = 0.8,
maxNumberOfIterations = 50

)

Do the same under the assumption that a sample size increase only takes
place at the first interim. The sample size for the third stage is set equal
to the second stage sample size.
mySampleSizeCalculationFunction <- function(..., stage,

minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
sampleSizesPerStage,
conditionalPower,
conditionalCriticalValue,
allocationRatioPlanned,
thetaH1,
stDevH1) {

if (stage <= 2) {
Note that allocationRatioPlanned is as a vector of length kMax
stageSubjects <- (1 + allocationRatioPlanned[stage])^2 /

allocationRatioPlanned[stage] *
(max(0, conditionalCriticalValue + stats::qnorm(conditionalPower)))^2 /
(max(1e-12, thetaH1 / stDevH1))^2

stageSubjects <- min(max(
minNumberOfSubjectsPerStage[stage],
stageSubjects

), maxNumberOfSubjectsPerStage[stage])
} else {

stageSubjects <- sampleSizesPerStage[stage - 1]
}
return(stageSubjects)

}
getSimulationMeans(designIN,

alternative = 0:4, stDev = 5,
plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 80, 80),
conditionalPower = 0.8,

158 getSimulationMultiArmMeans

calcSubjectsFunction = mySampleSizeCalculationFunction,
maxNumberOfIterations = 50

)

End(Not run)

getSimulationMultiArmMeans

Get Simulation Multi-Arm Means

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing means in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmMeans(
design = NULL,
...,
activeArms = NA_integer_,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
muMaxVector = seq(0, 1, 0.2),
gED50 = NA_real_,
slope = 1,
doseLevels = NA_real_,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
stDev = 1,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_integer_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

getSimulationMultiArmMeans 159

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", muMaxVector specifies the range of effect sizes for the treatment
group with highest response. If "sigmoidEmax" is selected, gED50 and slope
has to be entered to specify the ED50 and the slope of the sigmoid Emax model.
For "sigmoidEmax", muMaxVector specifies the range of effect sizes for the
treatment group with response according to infinite dose. If "userDefined" is
selected, effectMatrix has to be entered.

muMaxVector Range of effect sizes for the treatment group with highest response for "linear"
and "sigmoidEmax" model, default is seq(0, 1, 0.2).

gED50 If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

doseLevels The dose levels for the dose response relationship. If not specified, these dose
levels are 1,...,activeArms.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

stDev The standard deviation under which the data is simulated, default is 1. For two-
armed trials, it is allowed to specify the standard deviations separately, i.e., as
vector with two elements. If meanRatio = TRUE is specified, stDev defines the
coefficient of variation sigma / mu2.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

160 getSimulationMultiArmMeans

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or

getSimulationMultiArmMeans 161

thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),
stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,
piControlH1, overallRates, and overallRatesControl (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

162 getSimulationMultiArmMeans

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a treatment-arm selection strategy with three active arms,
if the better of the arms is selected for the second stage, and
compare it with the no-selection case.
Assume a linear dose-response relationship
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "OF", kMax = 2)
sim <- getSimulationMultiArmMeans(design = designIN,

activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "best",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim0 <- getSimulationMultiArmMeans(design = designIN,
activeArms = 3, typeOfShape = "linear",
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes",
typeOfSelection = "all",
plannedSubjects = c(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim$rejectAtLeastOne
sim$expectedNumberOfSubjects

sim0$rejectAtLeastOne
sim0$expectedNumberOfSubjects

Compare the power of the conditional Dunnett test with the power of the
combination test using Dunnett's intersection tests if no treatment arm
selection takes place. Asseume a linear dose-response relationship.
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "asUser",

userAlphaSpending = c(0, 0.025))
designCD <- getDesignConditionalDunnett(secondStageConditioning = TRUE)

index <- 1
for (design in c(designIN, designCD)) {

results <- getSimulationMultiArmMeans(design, activeArms = 3,

getSimulationMultiArmRates 163

muMaxVector = seq(0, 1, 0.2), typeOfShape = "linear",
plannedSubjects = cumsum(rep(20, 2)),
intersectionTest = "Dunnett",
typeOfSelection = "all", maxNumberOfIterations = maxNumberOfIterations)

if (index == 1) {
drift <- results$effectMatrix[nrow(results$effectMatrix),]
plot(drift, results$rejectAtLeastOne, type = "l", lty = 1,

lwd = 3, col = "black", ylab = "Power")
} else {

lines(drift,results$rejectAtLeastOne, type = "l",
lty = index, lwd = 3, col = "red")

}
index <- index + 1

}
legend("topleft", legend=c("Combination Dunnett", "Conditional Dunnett"),

col=c("black", "red"), lty = (1:2), cex = 0.8)

Assess the design characteristics of a user defined selection
strategy in a two-stage design using the inverse normal method
with constant bounds. Stopping for futility due to
de-selection of all treatment arms.
designIN <- getDesignInverseNormal(typeOfDesign = "P", kMax = 2)

mySelection <- function(effectVector) {
selectedArms <- (effectVector >= c(0, 0.1, 0.3))
return(selectedArms)

}

results <- getSimulationMultiArmMeans(designIN, activeArms = 3,
muMaxVector = seq(0, 1, 0.2),
typeOfShape = "linear",
plannedSubjects = c(30,60),
intersectionTest = "Dunnett",
typeOfSelection = "userDefined",
selectArmsFunction = mySelection,
maxNumberOfIterations = 100)

options(rpact.summary.output.size = "medium")
summary(results)
if (require(ggplot2)) plot(results, type = c(5,3,9), grid = 4)

End(Not run)

getSimulationMultiArmRates

Get Simulation Multi-Arm Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in a multi-arm treatment groups testing situation.

164 getSimulationMultiArmRates

Usage

getSimulationMultiArmRates(
design = NULL,
...,
activeArms = NA_integer_,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
piMaxVector = seq(0.2, 0.5, 0.1),
piControl = 0.2,
gED50 = NA_real_,
slope = 1,
doseLevels = NA_real_,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = NA,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piTreatmentsH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", piMaxVector specifies the range of effect sizes for the treatment
group with highest response. If "sigmoidEmax" is selected, gED50 and slope
has to be entered to specify the ED50 and the slope of the sigmoid Emax model.
For "sigmoidEmax", piMaxVector specifies the range of effect sizes for the

getSimulationMultiArmRates 165

treatment group with response according to infinite dose. If "userDefined" is
selected, effectMatrix has to be entered.

piMaxVector Range of assumed probabilities for the treatment group with highest response
for "linear" and "sigmoidEmax" model, default is seq(0, 1, 0.2).

piControl If specified, the assumed probability in the control arm for simulation and under
which the sample size recalculation is performed.

gED50 If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

doseLevels The dose levels for the dose response relationship. If not specified, these dose
levels are 1,...,activeArms.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

166 getSimulationMultiArmRates

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piTreatmentsH1 If specified, the assumed probability in the active treatment arm(s) under which
the sample size recalculation is performed.

piControlH1 If specified, the assumed probability in the reference group (if different from
piControl) for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

getSimulationMultiArmRates 167

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),
stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,
piControlH1, overallRates, and overallRatesControl (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of piTreatmentsH1 and/or piControlH1 makes only sense if kMax > 1 and if
conditionalPower, minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or
calcSubjectsFunction) are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRates,
overallRatesControl, piTreatmentsH1, and piControlH1. The function has to contain the
three-dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Simulate the power of the combination test with two interim stages and
O'Brien & Fleming boundaries using Dunnett's intersection tests if the

168 getSimulationMultiArmSurvival

best treatment arm is selected at first interim. Selection only take
place if a non-negative treatment effect is observed (threshold = 0);
20 subjects per stage and treatment arm, simulation is performed for
four parameter configurations.
design <- getDesignInverseNormal(typeOfDesign = "OF")
effectMatrix <- matrix(c(0.2,0.2,0.2,

0.4,0.4,0.4,
0.4,0.5,0.5,
0.4,0.5,0.6),
byrow = TRUE, nrow = 4, ncol = 3)

x <- getSimulationMultiArmRates(design = design, typeOfShape = "userDefined",
effectMatrix = effectMatrix , piControl = 0.2,
typeOfSelection = "best", threshold = 0, intersectionTest = "Dunnett",
plannedSubjects = c(20, 40, 60),
maxNumberOfIterations = 50)

summary(x)

End(Not run)

getSimulationMultiArmSurvival

Get Simulation Multi-Arm Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in a multi-arm treatment groups testing situation. In contrast
to getSimulationSurvival() (where survival times are simulated), normally distributed logrank
test statistics are simulated.

Usage

getSimulationMultiArmSurvival(
design = NULL,
...,
activeArms = NA_integer_,
effectMatrix = NULL,
typeOfShape = c("linear", "sigmoidEmax", "userDefined"),
omegaMaxVector = seq(1, 2.6, 0.4),
gED50 = NA_real_,
slope = 1,
doseLevels = NA_real_,
intersectionTest = c("Dunnett", "Bonferroni", "Simes", "Sidak", "Hierarchical"),
directionUpper = NA,
adaptations = NA,
typeOfSelection = c("best", "rBest", "epsilon", "all", "userDefined"),
effectMeasure = c("effectEstimate", "testStatistic"),
successCriterion = c("all", "atLeastOne"),
correlationComputation = c("alternative", "null"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,

getSimulationMultiArmSurvival 169

plannedEvents = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcEventsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", omegaMaxVector specifies the range of effect sizes for the treat-
ment group with highest response. If "sigmoidEmax" is selected, gED50 and
slope has to be entered to specify the ED50 and the slope of the sigmoid
Emax model. For "sigmoidEmax", omegaMaxVector specifies the range of ef-
fect sizes for the treatment group with response according to infinite dose. If
"userDefined" is selected, effectMatrix has to be entered.

omegaMaxVector Range of hazard ratios with highest response for "linear" and "sigmoidEmax"
model, default is seq(1, 2.6, 0.4).

gED50 If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

doseLevels The dose levels for the dose response relationship. If not specified, these dose
levels are 1,...,activeArms.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

170 getSimulationMultiArmSurvival

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

correlationComputation

If correlationComputation = "alternative", for simulating log-rank statis-
tics in the many-to-one design, a correlation matrix according to Deng et al.
(Biometrics, 2019) accounting for the respective alternative is used; if correlationComputation
= "null", a constant correlation matrix valid under the null, i.e., not accounting
for the alternative is used, default is "alternative".

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

getSimulationMultiArmSurvival 171

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),
stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,
piControlH1, overallRates, and overallRatesControl (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to
contain the three-dots argument ’...’ (see examples).

172 getSimulationMultiArmSurvival

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess different selection rules for a two-stage survival design with
O'Brien & Fleming alpha spending boundaries and (non-binding) stopping
for futility if the test statistic is negative.
Number of events at the second stage is adjusted based on conditional
power 80% and specified minimum and maximum number of Events.
design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = 0)

y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best", conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = 50,
plannedEvents = c(75, 120))

y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes", typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon", epsilonValue = 0.2,
effectMeasure = "effectEstimate",
conditionalPower = 0.8, minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = 50,
plannedEvents = c(75, 120))

y1$effectMatrix

y1$rejectAtLeastOne
y2$rejectAtLeastOne

y1$selectedArms

getSimulationRates 173

y2$selectedArms

End(Not run)

getSimulationRates Get Simulation Rates

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing rates in a one or two treatment groups testing situation.

Usage

getSimulationRates(
design = NULL,
...,
groups = 2L,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaH0 = ifelse(riskRatio, 1, 0),
pi1 = seq(0.2, 0.5, 0.1),
pi2 = NA_real_,
plannedSubjects = NA_real_,
directionUpper = NA,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
pi1H1 = NA_real_,
pi2H1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

174 getSimulationRates

riskRatio If TRUE, the design characteristics for one-sided testing of H0: pi1 / pi2 =
thetaH0 are simulated, default is FALSE.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

getSimulationRates 175

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

pi1H1 If specified, the assumed probability in the active treatment group if two treat-
ment groups are considered, or the assumed probability for a one treatment
group design, for which the conditional power was calculated.

pi2H1 If specified, the assumed probability in the reference group if two treatment
groups are considered, for which the conditional power was calculated.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The definition of pi1H1 and/or pi2H1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on variables stage, riskRatio,
thetaH0, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue,
overallRate, farringtonManningValue1, and farringtonManningValue2. The function has to
contain the three-dots argument ’...’ (see examples).

176 getSimulationRates

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group (if available).

4. pi2: The assumed or derived event rate in the control group (if available).

5. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

6. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

7. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

8. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

9. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

10. overallRate1: The cumulative rate in treatment group 1.

11. overallRate2: The cumulative rate in treatment group 2.

12. stagewiseRates1: The stage-wise rate in treatment group 1.

getSimulationRates 177

13. stagewiseRates2: The stage-wise rate in treatment group 2.

14. sampleSizesPerStage1: The stage-wise sample size in treatment group 1.

15. sampleSizesPerStage2: The stage-wise sample size in treatment group 2.

16. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

17. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with pi1H1 and pi2H1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Fixed sample size design (two groups) with total sample
size 120, pi1 = (0.3,0.4,0.5,0.6) and pi2 = 0.3
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results with power calculator
getSimulationRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 50)
getPowerRates(pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 120)

Do the same for a two-stage Pocock inverse normal group sequential
design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "P", futilityBounds = c(0))
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), maxNumberOfIterations = 50)
getPowerRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 80)

Assess power and average sample size if a sample size reassessment is
foreseen at conditional power 80% for the subsequent stage (decrease and increase)
based on observed overall (cumulative) rates and specified minNumberOfSubjectsPerStage
and maxNumberOfSubjectsPerStage

Do the same under the assumption that a sample size increase only takes place
if the rate difference exceeds the value 0.1 at interim. For this, the sample
size recalculation method needs to be redefined:
mySampleSizeCalculationFunction <- function(..., stage,

plannedSubjects,
minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
conditionalPower,
conditionalCriticalValue,
overallRate) {

if (overallRate[1] - overallRate[2] < 0.1) {
return(plannedSubjects[stage] - plannedSubjects[stage - 1])

} else {

178 getSimulationSurvival

rateUnderH0 <- (overallRate[1] + overallRate[2]) / 2
stageSubjects <- 2 * (max(0, conditionalCriticalValue *

sqrt(2 * rateUnderH0 * (1 - rateUnderH0)) +
stats::qnorm(conditionalPower) * sqrt(overallRate[1] *
(1 - overallRate[1]) + overallRate[2] * (1 - overallRate[2]))))^2 /
(max(1e-12, (overallRate[1] - overallRate[2])))^2

stageSubjects <- ceiling(min(max(
minNumberOfSubjectsPerStage[stage],
stageSubjects), maxNumberOfSubjectsPerStage[stage]))

return(stageSubjects)
}

}
getSimulationRates(designIN, pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = c(40, 80), minNumberOfSubjectsPerStage = c(40, 20),
maxNumberOfSubjectsPerStage = c(40, 160), conditionalPower = 0.8,
calcSubjectsFunction = mySampleSizeCalculationFunction, maxNumberOfIterations = 50)

End(Not run)

getSimulationSurvival Get Simulation Survival

Description

Returns the analysis times, power, stopping probabilities, conditional power, and expected sample
size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSimulationSurvival(
design = NULL,
...,
thetaH0 = 1,
directionUpper = NA,
pi1 = NA_real_,
pi2 = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
median1 = NA_real_,
median2 = NA_real_,
hazardRatio = NA_real_,
kappa = 1,
piecewiseSurvivalTime = NA_real_,
allocation1 = 1,
allocation2 = 1,
eventTime = 12,
accrualTime = c(0, 12),
accrualIntensity = 0.1,
accrualIntensityType = c("auto", "absolute", "relative"),
dropoutRate1 = 0,
dropoutRate2 = 0,

getSimulationSurvival 179

dropoutTime = 12,
maxNumberOfSubjects = NA_real_,
plannedEvents = NA_real_,
minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,
thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
maxNumberOfRawDatasetsPerStage = 0,
longTimeSimulationAllowed = FALSE,
seed = NA_real_,
calcEventsFunction = NULL,
showStatistics = FALSE

)

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

180 getSimulationSurvival

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

median1 The assumed median survival time in the treatment group, there is no default.
median2 The assumed median survival time in the reference group, there is no default.

Must be a positive numeric of length 1.
hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in

both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocation1 The number how many subjects are assigned to treatment 1 in a subsequent
order, default is 1

allocation2 The number how many subjects are assigned to treatment 2 in a subsequent
order, default is 1

eventTime The assumed time under which the event rates are calculated, default is 12.
accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details

see getAccrualTime()).
accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.
dropoutRate2 The assumed drop-out rate in the control group, default is 0.
dropoutTime The assumed time for drop-out rates in the control and the treatment group,

default is 12.
maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

getSimulationSurvival 181

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

maxNumberOfRawDatasetsPerStage

The number of raw datasets per stage that shall be extracted and saved as data.frame,
default is 0. getRawData() can be used to get the extracted raw data from the
object.

longTimeSimulationAllowed

Logical that indicates whether long time simulations that consumes more than
30 seconds are allowed or not, default is FALSE.

seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of events, number of subjects, and parameter configura-
tion. It also simulates the time when the required events are expected under the given assump-
tions (exponentially, piecewise exponentially, or Weibull distributed survival times and constant
or non-constant piecewise accrual). Additionally, integers allocation1 and allocation2 can be
specified that determine the number allocated to treatment group 1 and treatment group 2, respec-
tively. More precisely, unequal randomization ratios must be specified via the two integer arguments

182 getSimulationSurvival

allocation1 and allocation2 which describe how many subjects are consecutively enrolled in
each group, respectively, before a subject is assigned to the other group. For example, the arguments
allocation1 = 2, allocation2 = 1, maxNumberOfSubjects = 300 specify 2:1 randomization with
200 subjects randomized to intervention and 100 to control. (Caveat: Do not use allocation1 =
200, allocation2 = 100, maxNumberOfSubjects = 300 as this would imply that the 200 interven-
tion subjects are enrolled prior to enrollment of any control subjects.)

conditionalPower
The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage are defined.

Note that numberOfSubjects, numberOfSubjects1, and numberOfSubjects2 in the output are the
expected number of subjects.

calcEventsFunction
This function returns the number of events at given conditional power and conditional critical value
for specified testing situation. The function might depend on variables stage, conditionalPower,
thetaH0, plannedEvents, singleEventsPerStage, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
allocationRatioPlanned, conditionalCriticalValue, The function has to contain the three-
dots argument ’...’ (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to 0 and, additionally, accrualIntensity needs to be specified.
accrualIntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > 0 needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

getSimulationSurvival 183

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(0.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents
= 30)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationSurvival(maxNumberOfSubjects = 100, plannedEvents
= 30)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. pi1: The assumed or derived event rate in the treatment group.

4. pi2: The assumed or derived event rate in the control group.

5. hazardRatio: The hazard ratio under consideration (if available).

6. analysisTime: The analysis time.

7. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

8. eventsPerStage1: The observed number of events per stage in treatment group 1.

9. eventsPerStage2: The observed number of events per stage in treatment group 2.

10. singleEventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.

12. futilityPerStage: 1 if study should be stopped for futility, 0 otherwise.

13. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

184 getSimulationSurvival

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

16. hazardRatioEstimateLR: The estimated hazard ratio, derived from the log-rank statistic.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

Raw Data

getRawData() can be used to get the simulated raw data from the object as data.frame. Note that
getSimulationSurvival() must called before with maxNumberOfRawDatasetsPerStage > 0.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Fixed sample size with minimum required definitions, pi1 = (0.3,0.4,0.5,0.6) and
pi2 = 0.3 at event time 12, and accrual time 24
getSimulationSurvival(

pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 10

)

Increase number of simulation iterations
getSimulationSurvival(

pi1 = seq(0.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Determine necessary accrual time with default settings if 200 subjects and
30 subjects per time unit can be recruited
getSimulationSurvival(

plannedEvents = 40, accrualTime = 0,
accrualIntensity = 30, maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Determine necessary accrual time with default settings if 200 subjects and
if the first 6 time units 20 subjects per time unit can be recruited,
then 30 subjects per time unit
getSimulationSurvival(

plannedEvents = 40, accrualTime = c(0, 6),
accrualIntensity = c(20, 30), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

getSimulationSurvival 185

Determine maximum number of Subjects with default settings if the first
6 time units 20 subjects per time unit can be recruited, and after
10 time units 30 subjects per time unit
getSimulationSurvival(

plannedEvents = 40, accrualTime = c(0, 6, 10),
accrualIntensity = c(20, 30), maxNumberOfIterations = 50

)

Specify accrual time as a list
at <- list(

"0 - <6" = 20,
"6 - Inf" = 30

)
getSimulationSurvival(

plannedEvents = 40, accrualTime = at,
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,
"6 - <=10" = 30

)
getSimulationSurvival(plannedEvents = 40, accrualTime = at, maxNumberOfIterations = 50)

Specify effect size for a two-stage group sequential design with
O'Brien & Fleming boundaries. Effect size is based on event rates
at specified event time, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
designGS <- getDesignGroupSequential(kMax = 2)
getSimulationSurvival(

design = designGS,
pi1 = 0.2, pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE, maxNumberOfIterations = 50

)

As above, but with a three-stage O'Brien and Fleming design with
specified information rates, note that planned events consists of integer values
designGS2 <- getDesignGroupSequential(informationRates = c(0.4, 0.7, 1))
getSimulationSurvival(

design = designGS2,
pi1 = 0.2, pi2 = 0.3, eventTime = 24,
plannedEvents = round(designGS2$informationRates * 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Effect size is based on event rate at specified event time for the reference
group and hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(

design = designGS, hazardRatio = 0.5,
pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50

)

186 getSimulationSurvival

Effect size is based on hazard rate for the reference group and
hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(

design = designGS,
hazardRatio = 0.5, lambda2 = 0.02, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time and hazard ratios,
note that in getSimulationSurvival only on hazard ratio is used
in the case that the survival time is piecewise expoential
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = 1.5, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

pws <- list(
"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04

)
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = pws, hazardRatio = c(1.5),
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time for both treatment arms
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.015, 0.03, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time as a list,
note that in getSimulationSurvival only on hazard ratio
(not a vector) can be used
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04

)
getSimulationSurvival(

design = designGS,
piecewiseSurvivalTime = pws, hazardRatio = 1.5,
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time and delayed effect
(response after 5 time units)

getSimulationSurvival 187

getSimulationSurvival(
design = designGS,
piecewiseSurvivalTime = c(0, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambda1 = c(0.01, 0.02, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Specify effect size based on median survival times
getSimulationSurvival(

median1 = 5, median2 = 3, plannedEvents = 40,
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Specify effect size based on median survival
times of Weibull distribtion with kappa = 2
getSimulationSurvival(

median1 = 5, median2 = 3, kappa = 2,
plannedEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50

)

Perform recalculation of number of events based on conditional power for a
three-stage design with inverse normal combination test, where the conditional power
is calculated under the specified effect size thetaH1 = 1.3 and up to a four-fold
increase in originally planned sample size (number of events) is allowed.
Note that the first value in minNumberOfEventsPerStage and
maxNumberOfEventsPerStage is arbitrary, i.e., it has no effect.
designIN <- getDesignInverseNormal(informationRates = c(0.4, 0.7, 1))

resultsWithSSR1 <- getSimulationSurvival(
design = designIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, thetaH1 = 1.3,
plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSR1

If thetaH1 is unspecified, the observed hazard ratio estimate
(calculated from the log-rank statistic) is used for performing the
recalculation of the number of events
resultsWithSSR2 <- getSimulationSurvival(

design = designIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSR2

Compare it with design without event size recalculation
resultsWithoutSSR <- getSimulationSurvival(

design = designIN,

188 getSimulationSurvival

hazardRatio = seq(1, 1.6, 0.1), pi2 = 0.3,
plannedEvents = c(58, 102, 145), maxNumberOfSubjects = 800,
maxNumberOfIterations = 50

)
resultsWithoutSSR$overallReject
resultsWithSSR1$overallReject
resultsWithSSR2$overallReject

Confirm that event size racalcuation increases the Type I error rate,
i.e., you have to use the combination test
resultsWithSSRGS <- getSimulationSurvival(

design = designGS2,
hazardRatio = seq(1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 145),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSRGS$overallReject

Set seed to get reproducable results
identical(

getSimulationSurvival(
plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99

)$analysisTime,
getSimulationSurvival(

plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99

)$analysisTime
)

Perform recalculation of number of events based on conditional power as above.
The number of events is recalculated only in the first interim, the recalculated number
is also used for the final stage. Here, we use the user defind calcEventsFunction as
follows (note that the last stage value in minNumberOfEventsPerStage and maxNumberOfEventsPerStage
has no effect):
myCalcEventsFunction <- function(...,

stage, conditionalPower, estimatedTheta,
plannedEvents, eventsOverStages,
minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalCriticalValue) {

theta <- max(1 + 1e-12, estimatedTheta)
if (stage == 2) {

requiredStageEvents <-
max(0, conditionalCriticalValue + qnorm(conditionalPower))^2 * 4 / log(theta)^2

requiredOverallStageEvents <- min(
max(minNumberOfEventsPerStage[stage], requiredStageEvents),
maxNumberOfEventsPerStage[stage]

) + eventsOverStages[stage - 1]
} else {

requiredOverallStageEvents <- 2 * eventsOverStages[stage - 1] - eventsOverStages[1]
}
return(requiredOverallStageEvents)

}
resultsWithSSR <- getSimulationSurvival(

design = designIN,

getStageResults 189

hazardRatio = seq(1, 2.6, 0.5),
pi2 = 0.3,
conditionalPower = 0.8,
plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 4),
maxNumberOfEventsPerStage = 4 * c(NA, 44, 4),
maxNumberOfSubjects = 800,
calcEventsFunction = myCalcEventsFunction,
seed = 1234,
maxNumberOfIterations = 50

)

End(Not run)

getStageResults Get Stage Results

Description

Returns summary statistics and p-values for a given data set and a given design.

Usage

getStageResults(
design,
dataInput,
...,
stage = NA_integer_,
directionUpper = NA

)

Arguments

design The trial design.

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

... Further (optional) arguments to be passed:

thetaH0 The null hypothesis value, default is 0 for the normal and the binary
case (testing means and rates, respectively), it is 1 for the survival case (test-
ing the hazard ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is,
in case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2)
can be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1
can be specified.

190 getStageResults

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified
for defining the null hypothesis H0: pi = thetaH0.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett", "Bonferroni",
"Simes", "Sidak", and "Hierarchical", default is "Dunnett". Four op-
tions are available in population enrichment designs: "SpiessensDebois"
(one subset only), "Bonferroni", "Simes", and "Sidak", default is "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled", "pairwisePooled",
and "notPooled", default is "overallPooled". For enrichment designs,
the options are: "pooled", "pooledFromFull" (one subset only), and "notPooled",
default is "pooled".

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

stage The stage number (optional). Default: total number of existing stages in the data
input.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

Details

Calculates and returns the stage results of the specified design and data input at the specified stage.

Value

Returns a StageResults object.

• names to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

getSystemIdentifier 191

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal()
dataRates <- getDataset(

n1 = c(10, 10),
n2 = c(20, 20),
events1 = c(8, 10),
events2 = c(10, 16))

getStageResults(design, dataRates)

End(Not run)

getSystemIdentifier Get System Identifier

Description

This function generates a unique system identifier based on the platform, R version, and rpact
package version.

Usage

getSystemIdentifier(date = NULL)

Arguments

date A character string or Date representing the date. Default is Sys.Date().

Value

A character string representing the unique system identifier.

Examples

Not run:
getSystemIdentifier()

End(Not run)

192 getTestActions

getTestActions Get Test Actions

Description

Returns test actions.

Usage

getTestActions(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

... Only available for backward compatibility.

Details

Returns the test actions of the specified design and stage results at the specified stage.

Value

Returns a character vector of length kMax Returns a numeric vector of length kMax containing the
test actions of each stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidenceInterval(),
getFinalPValue(), getRepeatedConfidenceIntervals(), getRepeatedPValues(), getStageResults()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getTestActions(getStageResults(design, dataInput = data))

End(Not run)

getWideFormat 193

getWideFormat Get Wide Format

Description

Returns the specified dataset as a data.frame in so-called wide format.

Usage

getWideFormat(dataInput)

Details

In the wide format (unstacked), the data are presented with each different data variable in a separate
column, i.e., the different groups are in separate columns.

Value

A data.frame will be returned.

See Also

getLongFormat() for returning the dataset as a data.frame in long format.

InstallationQualificationResult

Installation Qualification Result Object

Description

This object represents the structured result of a full or partial installation qualification test execu-
tion. It includes metadata about the executed test suite, paths used, summary statistics, and status
messages.

Format

An S3 object of class InstallationQualificationResult with the following elements:

completeUnitTestSetEnabled Logical indicating whether the full test set was enabled

testFileDirectory Directory containing test scripts

testFileTargetDirectory Directory to which tests are copied or linked

reportType Report type selected ("compact", "detailed", or "Rout")

executionMode Execution mode ("default", "downloadOnly", "downloadAndRunTests", or "runTestsInTestFileDirectory")

scope Scope of the qualification ("basic", "devel", "both", "internet", or "all")

resultDir Directory where the result reports are stored

resultOuputFile Main output report filename

reportFileNames Vector of report files generated

194 kableParameterSet

minNumberOfExpectedTests Minimum number of expected tests

totalNumberOfTests Number of tests actually run

numberOfFailedTests Number of failed tests

numberOfSkippedTests Number of skipped tests

resultMessage Message summarizing the result

statusMessage Detailed status message

status Overall result status ("success", "incomplete", or "failed")

Details

The object is returned by the function testPackage and is of class InstallationQualificationResult.

See Also

testPackage

kableParameterSet Create output in Markdown

Description

The kable() function returns the output of the specified object formatted in Markdown.

Usage

S3 method for class 'ParameterSet'
kable(x, ...)

S3 method for class 'FieldSet'
kable(x, ..., enforceRowNames = TRUE, niceColumnNamesEnabled = TRUE)

S3 method for class 'data.frame'
kable(x, ...)

S3 method for class 'table'
kable(x, ...)

S3 method for class 'matrix'
kable(x, ...)

S3 method for class 'array'
kable(x, ...)

S3 method for class 'numeric'
kable(x, ...)

S3 method for class 'character'
kable(x, ...)

knit_print.FieldSet 195

S3 method for class 'logical'
kable(x, ...)

kable(x, ...)

Arguments

x A ParameterSet. If x does not inherit from class ParameterSet, knitr::kable(x)
will be returned.

... Other arguments (see kable).

Details

This function is deprecated and should no longer be used. Manual use of kable() for rpact result
objects is no longer needed, as the formatting and display will be handled automatically by the rpact
package. Please remove any manual kable() calls from your code to avoid redundancy and potential
issues. The results will be displayed in a consistent format automatically.

knit_print.FieldSet Print Field Set in Markdown Code Chunks

Description

The function knit_print.FieldSet is the default printing function for rpact result objects in knitr.
The chunk option render uses this function by default. To fall back to the normal printing behavior
set the chunk option render = normal_print. For more information see knit_print.

Usage

S3 method for class 'FieldSet'
knit_print(x, ...)

Arguments

x A FieldSet.

... Other arguments (see knit_print).

Details

Generic function to print a field set in Markdown.

Markdown options

Use options("rpact.print.heading.base.number" = NUMBER) (where NUMBER is an integer value
>= -2) to specify the heading level.

NUMBER = 1 results in the heading prefix #, NUMBER = 2 results in ##, ...

The default is options("rpact.print.heading.base.number" = -2), i.e., the top headings will
be written italic but are not explicit defined as header. options("rpact.print.heading.base.number"
= -1) means that all headings will be written bold but are not explicit defined as header.

Furthermore the following options can be set globally:

196 knit_print.ParameterSet

• rpact.auto.markdown.all: if TRUE, all output types will be rendered in Markdown format
automatically.

• rpact.auto.markdown.print: if TRUE, all print outputs will be rendered in Markdown for-
mat automatically.

• rpact.auto.markdown.summary: if TRUE, all summary outputs will be rendered in Mark-
down format automatically.

• rpact.auto.markdown.plot: if TRUE, all plot outputs will be rendered in Markdown format
automatically.

Example: options("rpact.auto.markdown.plot" = FALSE) disables the automatic knitting of
plots inside Markdown documents.

knit_print.ParameterSet

Print Parameter Set in Markdown Code Chunks

Description

The function knit_print.ParameterSet is the default printing function for rpact result objects in
knitr. The chunk option render uses this function by default. To fall back to the normal printing
behavior set the chunk option render = normal_print. For more information see knit_print.

Usage

S3 method for class 'ParameterSet'
knit_print(x, ...)

Arguments

x A ParameterSet.

... Other arguments (see knit_print).

Details

Generic function to print a parameter set in Markdown.

Markdown options

Use options("rpact.print.heading.base.number" = NUMBER) (where NUMBER is an integer value
>= -2) to specify the heading level.

NUMBER = 1 results in the heading prefix #, NUMBER = 2 results in ##, ...

The default is options("rpact.print.heading.base.number" = -2), i.e., the top headings will
be written italic but are not explicit defined as header. options("rpact.print.heading.base.number"
= -1) means that all headings will be written bold but are not explicit defined as header.

Furthermore the following options can be set globally:

• rpact.auto.markdown.all: if TRUE, all output types will be rendered in Markdown format
automatically.

• rpact.auto.markdown.print: if TRUE, all print outputs will be rendered in Markdown for-
mat automatically.

knit_print.SummaryFactory 197

• rpact.auto.markdown.summary: if TRUE, all summary outputs will be rendered in Mark-
down format automatically.

• rpact.auto.markdown.plot: if TRUE, all plot outputs will be rendered in Markdown format
automatically.

Example: options("rpact.auto.markdown.plot" = FALSE) disables the automatic knitting of
plots inside Markdown documents.

knit_print.SummaryFactory

Print Summary Factory in Markdown Code Chunks

Description

The function knit_print.SummaryFactory is the default printing function for rpact summary ob-
jects in knitr. The chunk option render uses this function by default. To fall back to the nor-
mal printing behavior set the chunk option render = normal_print. For more information see
knit_print.

Usage

S3 method for class 'SummaryFactory'
knit_print(x, ...)

Arguments

x A SummaryFactory.

... Other arguments (see knit_print).

Details

Generic function to print a summary object in Markdown.

Markdown options

Use options("rpact.print.heading.base.number" = NUMBER) (where NUMBER is an integer value
>= -2) to specify the heading level.

NUMBER = 1 results in the heading prefix #, NUMBER = 2 results in ##, ...

The default is options("rpact.print.heading.base.number" = -2), i.e., the top headings will
be written italic but are not explicit defined as header. options("rpact.print.heading.base.number"
= -1) means that all headings will be written bold but are not explicit defined as header.

Furthermore the following options can be set globally:

• rpact.auto.markdown.all: if TRUE, all output types will be rendered in Markdown format
automatically.

• rpact.auto.markdown.print: if TRUE, all print outputs will be rendered in Markdown for-
mat automatically.

• rpact.auto.markdown.summary: if TRUE, all summary outputs will be rendered in Mark-
down format automatically.

198 MarkdownReporter

• rpact.auto.markdown.plot: if TRUE, all plot outputs will be rendered in Markdown format
automatically.

Example: options("rpact.auto.markdown.plot" = FALSE) disables the automatic knitting of
plots inside Markdown documents.

length.TrialDesignSet Length of Trial Design Set

Description

Returns the number of designs in a TrialDesignSet.

Usage

S3 method for class 'TrialDesignSet'
length(x)

Arguments

x A TrialDesignSet object.

Details

Is helpful for iteration over all designs in a design set.

Value

Returns a non-negative integer of length 1 representing the number of design in the TrialDesignSet.

Examples

Not run:
designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
length(designSet)

End(Not run)

MarkdownReporter Markdown Reporter for Test Results

Description

This class defines a Markdown reporter for test results, inheriting from the R6::Reporter class. It
logs test results in Markdown format and saves them to a file named test_results.md.

mvnprd 199

Fields

startTime The start time of the test run.
output A character vector to store the log output.
failures The number of test failures.
fileName The name of the current test file being processed.

Methods

initialize(...) Initializes the reporter, setting up the output and failures fields.
log(...) Logs messages to the output field.
start_reporter() Starts the reporter, logging the introduction and test results header.
start_file(file) Sets the current file name being processed.
getContext() Gets the context from the current file name.
add_result(context, test, result) Adds a test result to the log, marking it as passed or failed.
end_reporter() Ends the reporter, logging the summary and saving the output to a file.
finalize() Finalizes the reporter, displaying a message that the test results were saved.

mvnprd Original Algorithm AS 251: Normal Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, doi:10.2307/2347754.

Usage

mvnprd(..., A, B, BPD, EPS = 1e-06, INF, IERC = 1, HINC = 0)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

A Upper limits of integration. Array of N dimensions
B Lower limits of integration. Array of N dimensions
BPD Values defining correlation structure. Array of N dimensions
EPS desired accuracy. Defaults to 1e-06
INF Determines where integration is done to infinity. Array of N dimensions. Valid

values for INF(I): 0 = c(B(I), Inf), 1 = c(-Inf, A(I)), 2 = c(B(I), A(I))
IERC error control. If set to 1, strict error control based on fourth derivative is used. If

set to zero, error control based on halving intervals is used
HINC Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

Details

This is a wrapper function for the original Fortran 77 code. For a multivariate normal vector with
correlation structure defined by RHO(I,J) = BPD(I) * BPD(J), computes the probability that the
vector falls in a rectangle in n-space with error less than eps.

https://doi.org/10.2307/2347754

200 mvstud

mvstud Original Algorithm AS 251: Student T Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, doi:10.2307/2347754.

Usage

mvstud(..., NDF, A, B, BPD, D, EPS = 1e-06, INF, IERC = 1, HINC = 0)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

NDF Degrees of Freedom. Use 0 for infinite D.F.

A Upper limits of integration. Array of N dimensions

B Lower limits of integration. Array of N dimensions

BPD Values defining correlation structure. Array of N dimensions

D Non-Centrality Vector

EPS desired accuracy. Defaults to 1e-06

INF Determines where integration is done to infinity. Array of N dimensions. Valid
values for INF(I): 0 = c(B(I), Inf), 1 = c(-Inf, A(I)), 2 = c(B(I), A(I))

IERC error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used

HINC Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

Details

This is a wrapper function for the original Fortran 77 code. For a multivariate normal vector with
correlation structure defined by RHO(I,J) = BPD(I) * BPD(J), computes the probability that the
vector falls in a rectangle in n-space with error less than eps.

Examples

Not run:
N <- 3
RHO <- 0.5
B <- rep(-5.0, length = N)
A <- rep(5.0, length = N)
INF <- rep(2, length = N)
BPD <- rep(sqrt(RHO), length = N)
D <- rep(0.0, length = N)
result <- mvstud(NDF = 0, A = A, B = B, BPD = BPD, INF = INF, D = D)
result

End(Not run)

https://doi.org/10.2307/2347754

names.AnalysisResults 201

names.AnalysisResults Names of a Analysis Results Object

Description

Function to get the names of an AnalysisResults object.

Usage

S3 method for class 'AnalysisResults'
names(x)

Arguments

x An AnalysisResults object created by getAnalysisResults().

Details

Returns the names of an analysis results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.FieldSet Names of a Field Set Object

Description

Function to get the names of a FieldSet object.

Usage

S3 method for class 'FieldSet'
names(x)

Arguments

x A FieldSet object.

Details

Returns the names of a field set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

202 names.StageResults

names.SimulationResults

Names of a Simulation Results Object

Description

Function to get the names of a SimulationResults object.

Usage

S3 method for class 'SimulationResults'
names(x)

Arguments

x A SimulationResults object created by getSimulationResults[MultiArm/Enrichment][Means/Rates/Survival].

Details

Returns the names of a simulation results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.StageResults Names of a Stage Results Object

Description

Function to get the names of a StageResults object.

Usage

S3 method for class 'StageResults'
names(x)

Arguments

x A StageResults object.

Details

Returns the names of stage results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.TrialDesignSet 203

names.TrialDesignSet Names of a Trial Design Set Object

Description

Function to get the names of a TrialDesignSet object.

Usage

S3 method for class 'TrialDesignSet'
names(x)

Arguments

x A TrialDesignSet object.

Details

Returns the names of a design set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

Examples

Not run:
designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
names(designSet)

End(Not run)

NumberOfSubjects Number Of Subjects

Description

Class for the definition of number of subjects results.

Details

NumberOfSubjects is a class for the definition of number of subjects results.

204 obtain

Fields

time The time values. Is a numeric vector.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

obtain Extract a single parameter

Description

Fetch a parameter from a parameter set.

Usage

obtain(x, ..., output)

S3 method for class 'ParameterSet'
obtain(x, ..., output = c("named", "labeled", "value", "list"))

fetch(x, ..., output)

S3 method for class 'ParameterSet'
fetch(x, ..., output = c("named", "labeled", "value", "list"))

Arguments

x The ParameterSet object to fetch from.

... One or more variables specified as:

• a literal variable name
• a positive integer, giving the position counting from the left
• a negative integer, giving the position counting from the right. The de-

fault returns the last parameter. This argument is taken by expression and
supports quasiquotation (you can unquote column names and column loca-
tions).

output A character defining the output type as follows:

• "named" (default) returns the named value if the value is a single value, the
value inside a named list otherwise

• "value" returns only the value itself
• "list" returns the value inside a named list

ParameterSet 205

Examples

Not run:
getDesignInverseNormal() |> fetch(kMax)
getDesignInverseNormal() |> fetch(kMax, output = "list")

End(Not run)

ParameterSet Parameter Set

Description

Basic class for parameter sets.

Details

The parameter set implements basic functions for a set of parameters.

param_accrualIntensity

Parameter Description: Accrual Intensity

Description

Parameter Description: Accrual Intensity

Arguments

accrualIntensity

A numeric vector of accrual intensities, default is the relative intensity 0.1 (for
details see getAccrualTime()).

param_accrualIntensityType

Parameter Description: Accrual Intensity Type

Description

Parameter Description: Accrual Intensity Type

Arguments

accrualIntensityType

A character value specifying the accrual intensity input type. Must be one of
"auto", "absolute", or "relative"; default is "auto", i.e., if all values are <
1 the type is "relative", otherwise it is "absolute".

206 param_activeArms

param_accrualIntensity_counts

Parameter Description: accrualIntensity for Counts

Description

Parameter Description: accrualIntensity for Counts

Arguments

accrualIntensity

If specified, the assumed accrual intensities for the study, there is no default.

param_accrualTime Parameter Description: Accrual Time

Description

Parameter Description: Accrual Time

Arguments

accrualTime The assumed accrual time intervals for the study, default is c(0, 12) (for details
see getAccrualTime()).

param_accrualTime_counts

Parameter Description: accrualTime for Counts

Description

Parameter Description: accrualTime for Counts

Arguments

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

param_activeArms Parameter Description: Active Arms

Description

Parameter Description: Active Arms

Arguments

activeArms The number of active treatment arms to be compared with control, default is 3.

param_adaptations 207

param_adaptations Parameter Description: Adaptations

Description

Parameter Description: Adaptations

Arguments

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

param_allocationRatioPlanned

Parameter Description: Allocation Ratio Planned

Description

Parameter Description: Allocation Ratio Planned

Arguments

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

param_allocationRatioPlanned_sampleSize

Parameter Description: Allocation Ratio Planned With Optimum Op-
tion

Description

Parameter Description: Allocation Ratio Planned With Optimum Option

Arguments

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = 0 is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

208 param_beta

param_alpha Parameter Description: Alpha

Description

Parameter Description: Alpha

Arguments

alpha The significance level alpha, default is 0.025. Must be a positive numeric of
length 1.

param_alternative Parameter Description: Alternative

Description

Parameter Description: Alternative

Arguments

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(0, 1, 0.2) (power calculations) or seq(0.2,
1, 0.2) (sample size calculations).

param_alternative_simulation

Parameter Description: Alternative for Simulation

Description

Parameter Description: Alternative for Simulation

Arguments

alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(0, 1, 0.2).

param_beta Parameter Description: Beta

Description

Parameter Description: Beta

Arguments

beta Type II error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is 0.20. Must be a
positive numeric of length 1.

param_bindingFutility 209

param_bindingFutility Parameter Description: Binding Futility

Description

Parameter Description: Binding Futility

Arguments

bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

param_calcEventsFunction

Parameter Description: Calculate Events Function

Description

Parameter Description: Calculate Events Function

Arguments

calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

param_calcSubjectsFunction

Parameter Description: Calculate Subjects Function

Description

Parameter Description: Calculate Subjects Function

Arguments

calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(see details and examples).

210 param_dataInput

param_conditionalPower

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

The conditional power for the subsequent stage under which the sample size
recalculation is performed. Must be a positive numeric of length 1.

param_conditionalPowerSimulation

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

param_dataInput Parameter Description: Data Input

Description

Parameter Description: Data Input

Arguments

dataInput The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset(). For more information see getDataset().

param_design 211

param_design Parameter Description: Design

Description

Parameter Description: Design

Arguments

design The trial design.

param_design_with_default

Parameter Description: Design with Default

Description

Parameter Description: Design with Default

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

param_digits Parameter Description: Digits

Description

Parameter Description: Digits

Arguments

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

param_directionUpper Parameter Description: Direction Upper

Description

Parameter Description: Direction Upper

Arguments

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

212 param_dropoutTime

param_doseLevels Parameter Description: Dose Levels

Description

Parameter Description: Dose Levels

Arguments

doseLevels The dose levels for the dose response relationship. If not specified, these dose
levels are 1,...,activeArms.

param_dropoutRate1 Parameter Description: Dropout Rate (1)

Description

Parameter Description: Dropout Rate (1)

Arguments

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

param_dropoutRate2 Parameter Description: Dropout Rate (2)

Description

Parameter Description: Dropout Rate (2)

Arguments

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

param_dropoutTime Parameter Description: Dropout Time

Description

Parameter Description: Dropout Time

Arguments

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

param_effectList 213

param_effectList Parameter Description: Effect List

Description

Parameter Description: Effect List

Arguments

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

param_effectMatrix Parameter Description: Effect Matrix

Description

Parameter Description: Effect Matrix

Arguments

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

param_effectMeasure Parameter Description: Effect Measure

Description

Parameter Description: Effect Measure

Arguments

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate".

param_epsilonValue Parameter Description: Epsilon Value

Description

Parameter Description: Epsilon Value

Arguments

epsilonValue For typeOfSelection = "epsilon" (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

214 param_gED50

param_eventTime Parameter Description: Event Time

Description

Parameter Description: Event Time

Arguments

eventTime The assumed time under which the event rates are calculated, default is 12.

param_fixedExposureTime_counts

Parameter Description: fixedExposureTime for Counts

Description

Parameter Description: fixedExposureTime for Counts

Arguments

fixedExposureTime

If specified, the fixed time of exposure per subject for count data, there is no
default.

param_followUpTime_counts

Parameter Description: followUpTime for Counts

Description

Parameter Description: followUpTime for Counts

Arguments

followUpTime If specified, the assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

param_gED50 Parameter Description: G ED50

Description

Parameter Description: G ED50

Arguments

gED50 If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

param_grid 215

param_grid Parameter Description: Grid (Output Specification Of Multiple Plots)

Description

Parameter Description: Grid (Output Specification Of Multiple Plots)

Arguments

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

param_groups Parameter Description: Number Of Treatment Groups

Description

Parameter Description: Number Of Treatment Groups

Arguments

groups The number of treatment groups (1 or 2), default is 2.

param_hazardRatio Parameter Description: Hazard Ratio

Description

Parameter Description: Hazard Ratio

Arguments

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

216 param_informationRates

param_includeAllParameters

Parameter Description: Include All Parameters

Description

Parameter Description: Include All Parameters

Arguments

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

param_informationEpsilon

Parameter Description: Information Epsilon

Description

Parameter Description: Information Epsilon

Arguments

informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, default is 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

param_informationRates

Parameter Description: Information Rates

Description

Parameter Description: Information Rates

Arguments

informationRates

The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

param_intersectionTest_Enrichment 217

param_intersectionTest_Enrichment

Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois",
"Bonferroni", "Simes", and "Sidak", default is "Simes".

param_intersectionTest_MultiArm

Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett",
"Bonferroni", "Simes", "Sidak", and "Hierarchical", default is "Dunnett".

param_kappa Parameter Description: Kappa

Description

Parameter Description: Kappa

Arguments

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

218 param_lambda2

param_kMax Parameter Description: Maximum Number of Stages

Description

Parameter Description: Maximum Number of Stages

Arguments

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 20 for group sequential or inverse
normal and 6 for Fisher combination test designs.

param_lambda1 Parameter Description: Lambda (1)

Description

Parameter Description: Lambda (1)

Arguments

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

param_lambda1_counts Parameter Description: lambda (1) for Counts

Description

Parameter Description: lambda (1) for Counts

Arguments

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

param_lambda2 Parameter Description: Lambda (2)

Description

Parameter Description: Lambda (2)

Arguments

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

param_lambda2_counts 219

param_lambda2_counts Parameter Description: lambda (2) for Counts

Description

Parameter Description: lambda (2) for Counts

Arguments

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

param_lambda_counts Parameter Description: lambda for Counts

Description

Parameter Description: lambda for Counts

Arguments

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

param_legendPosition Parameter Description: Legend Position On Plots

Description

Parameter Description: Legend Position On Plots

Arguments

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

220 param_maxNumberOfIterations

param_maxInformation Parameter Description: Maximum Information

Description

Parameter Description: Maximum Information

Arguments

maxInformation Positive value specifying the maximum information.

param_maxNumberOfEventsPerStage

Parameter Description: Max Number Of Events Per Stage

Description

Parameter Description: Max Number Of Events Per Stage

Arguments

maxNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

param_maxNumberOfIterations

Parameter Description: Maximum Number Of Iterations

Description

Parameter Description: Maximum Number Of Iterations

Arguments

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

param_maxNumberOfSubjects 221

param_maxNumberOfSubjects

Parameter Description: Maximum Number Of Subjects

Description

Parameter Description: Maximum Number Of Subjects

Arguments

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

param_maxNumberOfSubjectsPerStage

Parameter Description: Maximum Number Of Subjects Per Stage

Description

Parameter Description: Maximum Number Of Subjects Per Stage

Arguments

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

param_maxNumberOfSubjects_survival

Parameter Description: Maximum Number Of Subjects For Survival
Endpoint

Description

Parameter Description: Maximum Number Of Subjects For Survival Endpoint

Arguments

maxNumberOfSubjects

maxNumberOfSubjects > 0 needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

222 param_minNumberOfEventsPerStage

param_median1 Parameter Description: Median (1)

Description

Parameter Description: Median (1)

Arguments

median1 The assumed median survival time in the treatment group, there is no default.

param_median2 Parameter Description: Median (2)

Description

Parameter Description: Median (2)

Arguments

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

param_minNumberOfEventsPerStage

Parameter Description: Min Number Of Events Per Stage

Description

Parameter Description: Min Number Of Events Per Stage

Arguments

minNumberOfEventsPerStage

When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

param_minNumberOfSubjectsPerStage 223

param_minNumberOfSubjectsPerStage

Parameter Description: Minimum Number Of Subjects Per Stage

Description

Parameter Description: Minimum Number Of Subjects Per Stage

Arguments

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

param_niceColumnNamesEnabled

Parameter Description: Nice Column Names Enabled

Description

Parameter Description: Nice Column Names Enabled

Arguments

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

param_nMax Parameter Description: N_max

Description

Parameter Description: N_max

Arguments

nMax The maximum sample size. Must be a positive integer of length 1.

224 param_overdispersion_counts

param_normalApproximation

Parameter Description: Normal Approximation

Description

Parameter Description: Normal Approximation

Arguments

normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

param_nPlanned Parameter Description: N Planned

Description

Parameter Description: N Planned

Arguments

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

param_overdispersion_counts

Parameter Description: overdispersion for Counts

Description

Parameter Description: overdispersion for Counts

Arguments

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

param_palette 225

param_palette Parameter Description: Palette

Description

Parameter Description: Palette

Arguments

palette The palette, default is "Set1".

param_pi1_rates Parameter Description: Pi (1) for Rates

Description

Parameter Description: Pi (1) for Rates

Arguments

pi1 A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(0.2, 0.5, 0.1)
(power calculations and simulations) or seq(0.4, 0.6, 0.1) (sample size cal-
culations).

param_pi1_survival Parameter Description: Pi (1) for Survival Data

Description

Parameter Description: Pi (1) for Survival Data

Arguments

pi1 A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(0.2, 0.5, 0.1) (power calculations and simulations) or
seq(0.4, 0.6, 0.1) (sample size calculations).

param_pi2_rates Parameter Description: Pi (2) for Rates

Description

Parameter Description: Pi (2) for Rates

Arguments

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0.2.

226 param_plannedCalendarTime

param_pi2_survival Parameter Description: Pi (2) for Survival Data

Description

Parameter Description: Pi (2) for Survival Data

Arguments

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0.2.

param_piecewiseSurvivalTime

Parameter Description: Piecewise Survival Time

Description

Parameter Description: Piecewise Survival Time

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

param_plannedCalendarTime

Parameter Description: Planned Calendar Time

Description

Parameter Description: Planned Calendar Time

Arguments

plannedCalendarTime

For simulating count data, the time points where an analysis is planned to be
performed. Should be a vector of length kMax

param_plannedEvents 227

param_plannedEvents Parameter Description: Planned Events

Description

Parameter Description: Planned Events

Arguments

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

param_plannedSubjects Parameter Description: Planned Subjects

Description

Parameter Description: Planned Subjects

Arguments

plannedSubjects

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

param_plotPointsEnabled

Parameter Description: Plot Points Enabled

Description

Parameter Description: Plot Points Enabled

Arguments

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

228 param_seed

param_plotSettings Parameter Description: Plot Settings

Description

Parameter Description: Plot Settings

Arguments

plotSettings An object of class PlotSettings created by getPlotSettings().

param_populations Parameter Description: Populations

Description

Parameter Description: Populations

Arguments

populations The number of populations in a two-sample comparison, default is 3.

param_rValue Parameter Description: R Value

Description

Parameter Description: R Value

Arguments

rValue For typeOfSelection = "rbest" (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

param_seed Parameter Description: Seed

Description

Parameter Description: Seed

Arguments

seed The seed to reproduce the simulation, default is a random seed.

param_selectArmsFunction 229

param_selectArmsFunction

Parameter Description: Select Arms Function

Description

Parameter Description: Select Arms Function

Arguments

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),
stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,
piControlH1, overallRates, and overallRatesControl (see examples).

param_selectPopulationsFunction

Parameter Description: Select Populations Function

Description

Parameter Description: Select Populations Function

Arguments

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plannedEvents,
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and
survival), stDevH1 (for means), overallEffects, and for rates additionally:
piTreatmentsH1, piControlH1, overallRates, and overallRatesControl
(see examples).

param_showSource Parameter Description: Show Source

Description

Parameter Description: Show Source

230 param_slope

Arguments

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

param_showStatistics Parameter Description: Show Statistics

Description

Parameter Description: Show Statistics

Arguments

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

param_sided Parameter Description: Sided

Description

Parameter Description: Sided

Arguments

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

param_slope Parameter Description: Slope

Description

Parameter Description: Slope

Arguments

slope If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

param_stage 231

param_stage Parameter Description: Stage

Description

Parameter Description: Stage

Arguments

stage The stage number (optional). Default: total number of existing stages in the data
input.

param_stageResults Parameter Description: Stage Results

Description

Parameter Description: Stage Results

Arguments

stageResults The results at given stage, obtained from getStageResults().

param_stDev Parameter Description: Standard Deviation

Description

Parameter Description: Standard Deviation

Arguments

stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. For two-armed trials, it is allowed to specify the standard
deviations separately, i.e., as vector with two elements. If meanRatio = TRUE is
specified, stDev defines the coefficient of variation sigma / mu2.

param_stDevH1 Parameter Description: Standard Deviation Under Alternative

Description

Parameter Description: Standard Deviation Under Alternative

Arguments

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

232 param_successCriterion

param_stDevSimulation Parameter Description: Standard Deviation for Simulation

Description

Parameter Description: Standard Deviation for Simulation

Arguments

stDev The standard deviation under which the data is simulated, default is 1. For two-
armed trials, it is allowed to specify the standard deviations separately, i.e., as
vector with two elements. If meanRatio = TRUE is specified, stDev defines the
coefficient of variation sigma / mu2.

param_stratifiedAnalysis

Parameter Description: Stratified Analysis

Description

Parameter Description: Stratified Analysis

Arguments

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

param_successCriterion

Parameter Description: Success Criterion

Description

Parameter Description: Success Criterion

Arguments

successCriterion

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all" stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

param_theta 233

param_theta Parameter Description: Theta

Description

Parameter Description: Theta

Arguments

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

param_thetaH0 Parameter Description: Theta H0

Description

Parameter Description: Theta H0

Arguments

thetaH0 The null hypothesis value, default is 0 for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH0 is the non-inferiority bound. That is, in
case of (one-sided) testing of

• means: a value != 0 (or a value != 1 for testing the mean ratio) can be
specified.

• rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

• survival data: a bound for testing H0: hazard ratio = thetaH0 != 1 can
be specified.

• count data: a bound for testing H0: lambda1 / lambda2 = thetaH0 != 1
can be specified.

For testing a rate in one sample, a value thetaH0 in (0, 1) has to be specified for
defining the null hypothesis H0: pi = thetaH0.

param_thetaH1 Parameter Description: Effect Under Alternative

Description

Parameter Description: Effect Under Alternative

Arguments

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

param_tolerance 235

param_tolerance Parameter Description: Tolerance

Description

Parameter Description: Tolerance

Arguments

tolerance The numerical tolerance, default is 1e-06. Must be a positive numeric of length
1.

param_typeOfComputation

Parameter Description: Type Of Computation

Description

Parameter Description: Type Of Computation

Arguments

typeOfComputation

Three options are available: "Schoenfeld", "Freedman", "HsiehFreedman",
the default is "Schoenfeld". For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH0 != 1), only Schoenfeld’s for-
mula can be used.

param_typeOfDesign Parameter Description: Type of Design

Description

Parameter Description: Type of Design

Arguments

typeOfDesign The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("asKD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"), default is "OF".

236 param_typeOfShapeMeans

param_typeOfSelection Parameter Description: Type of Selection

Description

Parameter Description: Type of Selection

Arguments

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best", "rbest", "epsilon", "all", and "userDefined", de-
fault is "best".
For "rbest" (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon" (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined" is selected, "selectArmsFunction" or
"selectPopulationsFunction" has to be specified.

param_typeOfShapeMeans

Parameter Description: Type Of Shape

Description

Parameter Description: Type Of Shape

Arguments

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", muMaxVector specifies the range of effect sizes for the treatment
group with highest response. If "sigmoidEmax" is selected, gED50 and slope
has to be entered to specify the ED50 and the slope of the sigmoid Emax model.
For "sigmoidEmax", muMaxVector specifies the range of effect sizes for the
treatment group with response according to infinite dose. If "userDefined" is
selected, effectMatrix has to be entered.

param_typeOfShapeRates 237

param_typeOfShapeRates

Parameter Description: Type Of Shape

Description

Parameter Description: Type Of Shape

Arguments

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", piMaxVector specifies the range of effect sizes for the treatment
group with highest response. If "sigmoidEmax" is selected, gED50 and slope
has to be entered to specify the ED50 and the slope of the sigmoid Emax model.
For "sigmoidEmax", piMaxVector specifies the range of effect sizes for the
treatment group with response according to infinite dose. If "userDefined" is
selected, effectMatrix has to be entered.

param_typeOfShapeSurvival

Parameter Description: Type Of Shape

Description

Parameter Description: Type Of Shape

Arguments

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear", "sigmoidEmax", or "userDefined", default is "linear".
For "linear", omegaMaxVector specifies the range of effect sizes for the treat-
ment group with highest response. If "sigmoidEmax" is selected, gED50 and
slope has to be entered to specify the ED50 and the slope of the sigmoid
Emax model. For "sigmoidEmax", omegaMaxVector specifies the range of ef-
fect sizes for the treatment group with response according to infinite dose. If
"userDefined" is selected, effectMatrix has to be entered.

238 PerformanceScore

param_userAlphaSpending

Parameter Description: User Alpha Spending

Description

Parameter Description: User Alpha Spending

Arguments

userAlphaSpending

The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1 <= ... <= alpha_K <= alpha.

param_varianceOption Parameter Description: Variance Option

Description

Parameter Description: Variance Option

Arguments

varianceOption Defines the way to calculate the variance in multiple treatment arms (> 2) or pop-
ulation enrichment designs for testing means. For multiple arms, three options
are available: "overallPooled", "pairwisePooled", and "notPooled", de-
fault is "overallPooled". For enrichment designs, the options are: "pooled",
"pooledFromFull" (one subset only), and "notPooled", default is "pooled".

PerformanceScore Performance Score

Description

Contains the conditional performance score, its sub-scores and components according to Herrmann
et al. (2020) for a given simulation result.

Details

Use getPerformanceScore to calculate the performance score.

PiecewiseSurvivalTime 239

PiecewiseSurvivalTime Piecewise Exponential Survival Time

Description

Class for the definition of piecewise survival times.

Details

PiecewiseSurvivalTime is a class for the definition of piecewise survival times.

Fields

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

pi1 The assumed event rate in the treatment group. Is a numeric vector of length kMax containing
values between 0 and 1.

pi2 The assumed event rate in the control group. Is a numeric vector of length 1 containing a value
between 0 and 1.

median1 The assumed median survival time in the treatment group. Is a numeric vector.

median2 The assumed median survival time in the reference group. Is a numeric vector of length
1.

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalEnabled Indicates whether specification of piecewise definition of survival
time is selected. Is a logical vector of length 1.

delayedResponseAllowed If TRUE, delayed response is allowed, if FALSE the response is not de-
layed.

delayedResponseEnabled If TRUE, delayed response is enabled, if FALSE delayed response is not
enabled.

plot.AnalysisResults Analysis Results Plotting

Description

Plots the conditional power together with the likelihood function.

240 plot.AnalysisResults

Usage

S3 method for class 'AnalysisResults'
plot(
x,
y,
...,
type = 1L,
nPlanned = NA_real_,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The analysis results at given stage, obtained from getAnalysisResults().
y Not available for this kind of plot (is only defined to be compatible to the generic

plot function).
... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected,
assumedStDev (assumed standard deviation) can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults()).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample, a
value thetaH0 in (0, 1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to

plot.AnalysisResults 241

the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

main The main title, default is "Dataset".

xlab The x-axis label, default is "Stage".

ylab The y-axis label.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

The conditional power is calculated only if effect size and sample size is specified.

242 plot.Dataset

Value

Returns a ggplot2 object.

Examples

Not run:
design <- getDesignGroupSequential(kMax = 2)

dataExample <- getDataset(
n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)

result <- getAnalysisResults(design = design,
dataInput = dataExample, thetaH0 = 20,
nPlanned = c(30), thetaH1 = 1.5, stage = 1)

if (require(ggplot2)) plot(result, thetaRange = c(0, 100))

End(Not run)

plot.Dataset Dataset Plotting

Description

Plots a dataset.

Usage

S3 method for class 'Dataset'
plot(
x,
y,
...,
main = "Dataset",
xlab = "Stage",
ylab = NA_character_,
legendTitle = "Group",
palette = "Set1",
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The Dataset object to plot.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

plot.Dataset 243

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title, default is "Dataset".
xlab The x-axis label, default is "Stage".
ylab The y-axis label.
legendTitle The legend title, default is "Group".
palette The palette, default is "Set1".
showSource Logical. If TRUE, the parameter names of the object will be printed which were

used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot all kinds of datasets.

Value

Returns a ggplot2 object.

Examples

Not run:
Plot a dataset of means
dataExample <- getDataset(

n1 = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevs1 = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
if (require(ggplot2)) plot(dataExample, main = "Comparison of Means")

Plot a dataset of rates
dataExample <- getDataset(

n1 = c(8, 10, 9, 11),
n2 = c(11, 13, 12, 13),
events1 = c(3, 5, 5, 6),
events2 = c(8, 10, 12, 12)

)
if (require(ggplot2)) plot(dataExample, main = "Comparison of Rates")

End(Not run)

244 plot.EventProbabilities

plot.EventProbabilities

Event Probabilities Plotting

Description

Plots an object that inherits from class EventProbabilities.

Usage

S3 method for class 'EventProbabilities'
plot(
x,
y,
...,
allocationRatioPlanned = x$allocationRatioPlanned,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The object that inherits from EventProbabilities.

y An optional object that inherits from NumberOfSubjects.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

plot.NumberOfSubjects 245

palette The palette, default is "Set1".

plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot an event probabilities object.

Generic function to plot an event probabilities object.

Value

Returns a ggplot2 object.

plot.NumberOfSubjects Number Of Subjects Plotting

Description

Plots an object that inherits from class NumberOfSubjects.

246 plot.NumberOfSubjects

Usage

S3 method for class 'NumberOfSubjects'
plot(
x,
y,
...,
allocationRatioPlanned = NA_real_,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
legendTitle = NA_character_,
palette = "Set1",
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The object that inherits from NumberOfSubjects.

y An optional object that inherits from EventProbabilities.

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. Will be ignored if y is undefined.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). Note that at the moment only one type is available.

legendTitle The legend title, default is "".

palette The palette, default is "Set1".
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center

plot.ParameterSet 247

• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot an "number of subjects" object.

Generic function to plot a "number of subjects" object.

Value

Returns a ggplot2 object.

plot.ParameterSet Parameter Set Plotting

Description

Plots an object that inherits from class ParameterSet.

Usage

S3 method for class 'ParameterSet'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

248 plot.ParameterSet

Arguments

x The object that inherits from ParameterSet.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1).

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot a parameter set.

Value

Returns a ggplot2 object.

plot.SimulationResults 249

plot.SimulationResults

Simulation Results Plotting

Description

Plots simulation results.

Usage

S3 method for class 'SimulationResults'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = NA_integer_,
palette = "Set1",
theta = seq(-1, 1, 0.01),
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The simulation results, obtained from
getSimulationSurvival().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Overall Success’ plot (multi-arm and enrichment only)
• 2: creates a ’Success per Stage’ plot (multi-arm and enrichment only)
• 3: creates a ’Selected Arms per Stage’ plot (multi-arm and enrichment only)
• 4: creates a ’Reject per Stage’ or ’Rejected Arms per Stage’ plot
• 5: creates a ’Overall Power and Early Stopping’ plot
• 6: creates a ’Expected Number of Subjects and Power / Early Stop’ or

’Expected Number of Events and Power / Early Stop’ plot
• 7: creates an ’Overall Power’ plot

250 plot.SimulationResults

• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Sample Size’ or ’Expected Number of Events’ plot
• 10: creates a ’Study Duration’ plot (non-multi-arm and non-enrichment

survival only)
• 11: creates an ’Expected Number of Subjects’ plot (non-multi-arm and non-

enrichment survival only)
• 12: creates an ’Analysis Times’ plot (non-multi-arm and non-enrichment

survival only)
• 13: creates a ’Cumulative Distribution Function’ plot (non-multi-arm and

non-enrichment survival only)
• 14: creates a ’Survival Function’ plot (non-multi-arm and non-enrichment

survival only)
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".
theta A vector of standardized effect sizes (theta values), default is a sequence from

-1 to 1.
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.
legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find

a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

plot.StageResults 251

Details

Generic function to plot all kinds of simulation results.

Value

Returns a ggplot2 object.

Examples

Not run:
results <- getSimulationMeans(

alternative = 0:4, stDev = 5,
plannedSubjects = 40, maxNumberOfIterations = 1000

)
plot(results, type = 5)

End(Not run)

plot.StageResults Stage Results Plotting

Description

Plots the conditional power together with the likelihood function.

Usage

S3 method for class 'StageResults'
plot(
x,
y,
...,
type = 1L,
nPlanned,
allocationRatioPlanned = 1,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
legendTitle = NA_character_,
palette = "Set1",
legendPosition = NA_integer_,
showSource = FALSE,
plotSettings = NULL

)

Arguments

x The stage results at given stage, obtained from getStageResults() or getAnalysisResults().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

252 plot.StageResults

... Optional plot arguments. Furthermore the following arguments can be defined:

• thetaRange: A range of assumed effect sizes if testing means or a sur-
vival design was specified. Additionally, if testing means was selected, an
assumed standard deviation can be specified (default is 1).

• piTreatmentRange: A range of assumed rates pi1 to calculate the condi-
tional power. Additionally, if a two-sample comparison was selected, pi2
can be specified (default is the value from getAnalysisResults()).

• directionUpper: Specifies the direction of the alternative, only applicable
for one-sided testing; default is TRUE which means that larger values of the
test statistics yield smaller p-values.

• thetaH0: The null hypothesis value, default is 0 for the normal and the
binary case, it is 1 for the survival case. For testing a rate in one sample,
a value thetaH0 in (0,1) has to be specified for defining the null hypothesis
H0: pi = thetaH0.

type The plot type (default = 1). Note that at the moment only one type (the condi-
tional power plot) is available.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

legendTitle The legend title.

palette The palette, default is "Set1".

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center

plot.SummaryFactory 253

• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot all kinds of stage results. The conditional power is calculated only if effect
size and sample size is specified.

Value

Returns a ggplot2 object.

Examples

Not run:
design <- getDesignGroupSequential(

kMax = 4, alpha = 0.025,
informationRates = c(0.2, 0.5, 0.8, 1),
typeOfDesign = "WT", deltaWT = 0.25

)
dataExample <- getDataset(

n = c(20, 30, 30),
means = c(50, 51, 55),
stDevs = c(130, 140, 120)

)
stageResults <- getStageResults(design, dataExample, thetaH0 = 20)
if (require(ggplot2)) plot(stageResults, nPlanned = c(30), thetaRange = c(0, 100))

End(Not run)

plot.SummaryFactory Summary Factory Plotting

Description

Plots a summary factory.

254 plot.TrialDesign

Usage

S3 method for class 'SummaryFactory'
plot(x, y, ..., showSummary = FALSE)

Arguments

x The summary factory object.

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

showSummary Show the summary before creating the plot output, default is FALSE.

Details

Generic function to plot all kinds of summary factories.

Value

Returns a ggplot2 object.

plot.TrialDesign Trial Design Plotting

Description

Plots a trial design.

Usage

S3 method for class 'TrialDesign'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = 1L,
palette = "Set1",
theta = seq(-1, 1, 0.01),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

S3 method for class 'TrialDesignCharacteristics'
plot(x, y, ..., type = 1L, grid = 1)

plot.TrialDesign 255

Arguments

x The trial design, obtained from
getDesignGroupSequential(),
getDesignInverseNormal() or
getDesignFisher().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1 to 1.

nMax The maximum sample size. Must be a positive integer of length 1.
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands

256 plot.TrialDesign

• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

Details

Generic function to plot a trial design.

Generic function to plot a trial design.

Note that nMax is not an argument that it passed to ggplot2. Rather, the underlying calculations (e.g.
power for different theta’s or average sample size) are based on calls to function getPowerAndAverageSampleNumber()
which has argument nMax. I.e., nMax is not an argument to ggplot2 but to getPowerAndAverageSampleNumber()
which is called prior to plotting.

Value

Returns a ggplot2 object.

See Also

plot() to compare different designs or design parameters visual.

Examples

Not run:
design <- getDesignInverseNormal(

kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1),
typeBetaSpending = "bsOF"

)
if (require(ggplot2)) {

plot(design) # default: type = 1
}

End(Not run)

plot.TrialDesignPlan 257

plot.TrialDesignPlan Trial Design Plan Plotting

Description

Plots a trial design plan.

Usage

S3 method for class 'TrialDesignPlan'
plot(
x,
y,
...,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
type = NA_integer_,
palette = "Set1",
theta = NA_real_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The trial design plan, obtained from
getSampleSizeMeans(),
getSampleSizeRates(),
getSampleSizeSurvival(),
getSampleSizeCounts(),
getPowerMeans(),
getPowerRates() or
getPowerSurvival() or
getPowerCounts().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

main The main title.

xlab The x-axis label.

ylab The y-axis label.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 2: creates a ’Boundaries Effect Scale’ plot
• 3: creates a ’Boundaries p Values Scale’ plot

258 plot.TrialDesignPlan

• 4: creates a ’Error Spending’ plot
• 5: creates a ’Sample Size’ or ’Overall Power and Early Stopping’ plot
• 6: creates a ’Number of Events’ or ’Sample Size’ plot
• 7: creates an ’Overall Power’ plot
• 8: creates an ’Overall Early Stopping’ plot
• 9: creates an ’Expected Number of Events’ or ’Expected Sample Size’ plot
• 10: creates a ’Study Duration’ plot
• 11: creates an ’Expected Number of Subjects’ plot
• 12: creates an ’Analysis Times’ plot
• 13: creates a ’Cumulative Distribution Function’ plot
• 14: creates a ’Survival Function’ plot
• "all": creates all available plots and returns it as a grid plot or list

palette The palette, default is "Set1".
theta A vector of standardized effect sizes (theta values), default is a sequence from

-1 to 1.
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.
legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find

a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

plot.TrialDesignSet 259

Details

Generic function to plot all kinds of trial design plans.

Value

Returns a ggplot2 object.

Examples

Not run:
if (require(ggplot2)) plot(getSampleSizeMeans())

End(Not run)

plot.TrialDesignSet Trial Design Set Plotting

Description

Plots a trial design set.

Usage

S3 method for class 'TrialDesignSet'
plot(
x,
y,
...,
type = 1L,
main = NA_character_,
xlab = NA_character_,
ylab = NA_character_,
palette = "Set1",
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,
plotPointsEnabled = NA,
legendPosition = NA_integer_,
showSource = FALSE,
grid = 1,
plotSettings = NULL

)

Arguments

x The trial design set, obtained from getDesignSet().

y Not available for this kind of plot (is only defined to be compatible to the generic
plot function).

... Optional plot arguments. At the moment xlim and ylim are implemented for
changing x or y axis limits without dropping data observations.

type The plot type (default = 1). The following plot types are available:

260 plot.TrialDesignSet

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot
• 8: creates an ’Early Stopping’ plot
• 9: creates an ’Average Sample Size’ plot
• "all": creates all available plots and returns it as a grid plot or list

main The main title.
xlab The x-axis label.
ylab The y-axis label.
palette The palette, default is "Set1".
theta A vector of standardized effect sizes (theta values), default is a sequence from

-1 to 1.
nMax The maximum sample size. Must be a positive integer of length 1.
plotPointsEnabled

Logical. If TRUE, additional points will be plotted.
legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find

a suitable position. Choose one of the following values to specify the position
manually:

• -1: no legend will be shown
• NA: the algorithm tries to find a suitable position
• 0: legend position outside plot
• 1: legend position left top
• 2: legend position left center
• 3: legend position left bottom
• 4: legend position right top
• 5: legend position right center
• 6: legend position right bottom

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:

• "commands": returns a character vector with plot commands
• "axes": returns a list with the axes definitions
• "test": all plot commands will be validated with eval(parse()) and re-

turned as character vector (function does not stop if an error occurs)
• "validate": all plot commands will be validated with eval(parse()) and

returned as character vector (function stops if an error occurs)
Note: no plot object will be returned if showSource is a character.

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

plotSettings An object of class PlotSettings created by getPlotSettings().

plot.TrialDesignSummaries 261

Details

Generic function to plot a trial design set. Is, e.g., useful to compare different designs or design
parameters visual.

Value

Returns a ggplot2 object.

Examples

Not run:
design <- getDesignInverseNormal(

kMax = 3, alpha = 0.025,
typeOfDesign = "asKD", gammaA = 2,
informationRates = c(0.2, 0.7, 1), typeBetaSpending = "bsOF"

)

Create a set of designs based on the master design defined above
and varied parameter 'gammaA'
designSet <- getDesignSet(design = design, gammaA = 4)

if (require(ggplot2)) plot(designSet, type = 1, legendPosition = 6)

End(Not run)

plot.TrialDesignSummaries

Plot Trial Design Summaries

Description

Generic function to plot a TrialDesignSummaries object.

Usage

S3 method for class 'TrialDesignSummaries'
plot(x, ..., type = 1L, grid = 1)

Arguments

x a TrialDesignSummaries object to plot.

... further arguments passed to or from other methods.

type The plot type (default = 1). The following plot types are available:

• 1: creates a ’Boundaries’ plot
• 3: creates a ’Stage Levels’ plot
• 4: creates a ’Error Spending’ plot
• 5: creates a ’Power and Early Stopping’ plot
• 6: creates an ’Average Sample Size and Power / Early Stop’ plot
• 7: creates an ’Power’ plot

262 plotTypes

• 8: creates an ’Early Stopping’ plot

• 9: creates an ’Average Sample Size’ plot

• "all": creates all available plots and returns it as a grid plot or list

grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = 0 is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: ’ggpubr’, ’gridExtra’, or ’cowplot’.

PlotSettings Plot Settings

Description

Class for plot settings.

Details

Collects typical plot settings in an object.

Fields

lineSize The line size.

pointSize The point size.

pointColor The point color, e.g., "red" or "blue".

mainTitleFontSize The main tile font size.

axesTextFontSize The text font size.

legendFontSize The legend font size.

scalingFactor The scaling factor.

plotTypes Get Available Plot Types

Description

Function to identify the available plot types of an object.

plotTypes 263

Usage

plotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

getAvailablePlotTypes(
obj,
output = c("numeric", "caption", "numcap", "capnum"),
numberInCaptionEnabled = FALSE

)

Arguments

obj The object for which the plot types shall be identified, e.g. produced by getDesignGroupSequential()
or getSampleSizeMeans().

output The output type. Can be one of c("numeric", "caption", "numcap", "capnum").
numberInCaptionEnabled

If TRUE, the number will be added to the caption, default is FALSE.

Details

plotTypes and getAvailablePlotTypes() are equivalent, i.e., plotTypes is a short form of
getAvailablePlotTypes().

output:

1. numeric: numeric output

2. caption: caption as character output

3. numcap: list with number and caption

4. capnum: list with caption and number

Value

Returns a list if option is either capnum or numcap or returns a vector that is of character type for
option=caption or of numeric type for option=numeric.

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
getAvailablePlotTypes(design, "numeric")
plotTypes(design, "caption")
getAvailablePlotTypes(design, "numcap")
plotTypes(design, "capnum")

End(Not run)

264 print.Dataset

PowerAndAverageSampleNumberResult

Power and Average Sample Number Result

Description

Class for power and average sample number (ASN) results.

Details

This object cannot be created directly; use getPowerAndAverageSampleNumber() with suitable
arguments to create it.

Fields

nMax The maximum sample size. Is a numeric vector of length 1 containing a whole number.

theta A vector of standardized effect sizes (theta values). Is a numeric vector.

averageSampleNumber The average sample number calculated for each value of theta or nMax, if
the specified maximum sample size would be exceeded. Is a numeric vector.

calculatedPower The calculated power for the given scenario.

overallEarlyStop The overall early stopping probability. Is a numeric vector.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

overallFutility The overall stopping for futility probability. Is a numeric vector.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

print.Dataset Print Dataset Values

Description

print prints its Dataset argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'Dataset'
print(
x,
...,
markdown = NA,
output = c("list", "long", "wide", "r", "rComplete")

)

print.FieldSet 265

Arguments

x A Dataset object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

markdown If TRUE, the output will be created in Markdown.

output A character defining the output type, default is "list".

Details

Prints the dataset.

print.FieldSet Print Field Set Values

Description

print prints its FieldSet argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'FieldSet'
print(x, ..., markdown = NA)

Arguments

x The FieldSet object to print.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

markdown If TRUE, the object x will be printed using markdown syntax; normal representa-
tion will be used otherwise (default is FALSE)

Details

Prints the parameters and results of a field set.

print.InstallationQualificationResult

Print Installation Qualification Result

Description

This function prints the details of an InstallationQualificationResult object in a user-friendly
format.

Usage

S3 method for class 'InstallationQualificationResult'
print(x, ...)

266 print.ParameterSet

Arguments

x An object of class InstallationQualificationResult containing the results
of the installation qualification.

... Additional arguments passed to or from other methods.

Details

The function displays the result message, followed by the parameters and their values. It skips
parameters with NULL or NA values.

Value

This function does not return a value. It is called for its side effects of printing the result.

Examples

Not run:
result <- testPackage()
print(result)

End(Not run)

print.ParameterSet Print Parameter Set Values

Description

print prints its ParameterSet argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'ParameterSet'
print(x, ..., markdown = NA)

Arguments

x The ParameterSet object to print.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

markdown If TRUE, the object x will be printed using markdown syntax; normal representa-
tion will be used otherwise (default is FALSE)

Details

Prints the parameters and results of a parameter set.

print.SummaryFactory 267

print.SummaryFactory Summary Factory Printing

Description

Prints the result object stored inside a summary factory.

Usage

S3 method for class 'SummaryFactory'
print(x, ..., markdown = NA, sep = NA_character_)

Arguments

x The summary factory object.
... Optional plot arguments. At the moment xlim and ylim are implemented for

changing x or y axis limits without dropping data observations.
markdown If TRUE, the object x will be printed using markdown syntax; normal representa-

tion will be used otherwise (default is FALSE)
sep The separator line between the summary and the print output, default is "\n\n-----\n\n".

Details

Generic function to print all kinds of summary factories.

print.TrialDesignCharacteristics

Trial Design Characteristics Printing

Description

Prints the design characteristics object.

Usage

S3 method for class 'TrialDesignCharacteristics'
print(x, ..., markdown = NA, showDesign = TRUE)

Arguments

x The trial design characteristics object.
... Optional plot arguments. At the moment xlim and ylim are implemented for

changing x or y axis limits without dropping data observations.
markdown If TRUE, the object x will be printed using markdown syntax; normal representa-

tion will be used otherwise (default is FALSE)
showDesign Show the design print output above the design characteristics, default is TRUE.

Details

Generic function to print all kinds of design characteristics.

268 printCitation

print.TrialDesignSummaries

Print Trial Design Summaries

Description

Generic function to print a TrialDesignSummaries object.

Usage

S3 method for class 'TrialDesignSummaries'
print(x, ...)

Arguments

x a TrialDesignSummaries object to print.

... further arguments passed to or from other methods.

printCitation Print Citation

Description

How to cite rpact and R in publications.

Usage

printCitation(inclusiveR = TRUE, language = "en", markdown = NA)

Arguments

inclusiveR If TRUE (default) the information on how to cite the base R system in publications
will be added.

language Language code to use for the output, default is "en".

markdown If TRUE, the output will be created in Markdown.

Details

This function shows how to cite rpact and R (inclusiveR = TRUE) in publications.

Examples

printCitation()

rawDataTwoArmNormal 269

rawDataTwoArmNormal Raw Dataset Of A Two Arm Continuous Outcome With Covariates

Description

An artificial dataset that was randomly generated with simulated normal data. The data set has six
variables:

1. Subject id

2. Stage number

3. Group name

4. An example outcome in that we are interested in

5. The first covariate gender

6. The second covariate covariate

Usage

rawDataTwoArmNormal

Format

A data.frame object.

Details

See the vignette "Two-arm analysis for continuous data with covariates from raw data" to learn how
to

• import raw data from a csv file,

• calculate estimated adjusted (marginal) means (EMMs, least-squares means) for a linear model,
and

• perform two-arm interim analyses with these data.

You can use rawDataTwoArmNormal to reproduce the examples in the vignette.

rcmd Get Object R Code

Description

Returns the R source command of a result object.

270 rcmd

Usage

rcmd(
obj,
...,
leadingArguments = NULL,
includeDefaultParameters = FALSE,
stringWrapParagraphWidth = 90,
prefix = "",
postfix = "",
stringWrapPrefix = "",
newArgumentValues = list(),
tolerance = 1e-07,
pipeOperator = c("auto", "none", "magrittr", "R"),
output = c("vector", "cat", "test", "markdown", "internal"),
explicitPrint = FALSE

)

getObjectRCode(
obj,
...,
leadingArguments = NULL,
includeDefaultParameters = FALSE,
stringWrapParagraphWidth = 90,
prefix = "",
postfix = "",
stringWrapPrefix = "",
newArgumentValues = list(),
tolerance = 1e-07,
pipeOperator = c("auto", "none", "magrittr", "R"),
output = c("vector", "cat", "test", "markdown", "internal"),
explicitPrint = FALSE

)

Arguments

obj The result object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

leadingArguments

A character vector with arguments that shall be inserted at the beginning of the
function command, e.g., design = x. Be careful with this option because the
created R command may no longer be valid if used.

includeDefaultParameters

If TRUE, default parameters will be included in all rpact commands; default is
FALSE.

stringWrapParagraphWidth

An integer value defining the number of characters after which a line break shall
be inserted; set to NULL to insert no line breaks.

prefix A character string that shall be added to the beginning of the R command.

postfix A character string that shall be added to the end of the R command.

readDataset 271

stringWrapPrefix

A prefix character string that shall be added to each new line, typically some
spaces.

newArgumentValues

A named list with arguments that shall be renewed in the R command, e.g.,
newArgumentValues = list(informationRates = c(0.5, 1)).

tolerance The tolerance for defining a value as default.

pipeOperator The pipe operator to use in the R code, default is "none".

output The output format, default is a character "vector".

explicitPrint Show an explicit print command, default is FALSE.

Details

getObjectRCode() (short: rcmd()) recreates the R commands that result in the specified object
obj. obj must be an instance of class ParameterSet.

Value

A character value or vector will be returned.

readDataset Read Dataset

Description

Reads a data file and returns it as dataset object.

Usage

readDataset(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to read.table.

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for readDataset) the separator is a comma.

272 readDataset

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

readDataset is a wrapper function that uses read.table to read the CSV file into a data frame,
transfers it from long to wide format with reshape and puts the data to getDataset().

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

• names() to obtain the field names,

• print() to print the object,

• summary() to display a summary of the object,

• plot() to plot the object,

• as.data.frame() to coerce the object to a data.frame,

• as.matrix() to coerce the object to a matrix.

See Also

• readDatasets() for reading multiple datasets,

• writeDataset() for writing a single dataset,

• writeDatasets() for writing multiple datasets.

Examples

Not run:
dataFileRates <- system.file("extdata",

"dataset_rates.csv",
package = "rpact"

)
if (dataFileRates != "") {

datasetRates <- readDataset(dataFileRates)
datasetRates

}

dataFileMeansMultiArm <- system.file("extdata",
"dataset_means_multi-arm.csv",
package = "rpact"

readDatasets 273

)
if (dataFileMeansMultiArm != "") {

datasetMeansMultiArm <- readDataset(dataFileMeansMultiArm)
datasetMeansMultiArm

}

dataFileRatesMultiArm <- system.file("extdata",
"dataset_rates_multi-arm.csv",
package = "rpact"

)
if (dataFileRatesMultiArm != "") {

datasetRatesMultiArm <- readDataset(dataFileRatesMultiArm)
datasetRatesMultiArm

}

dataFileSurvivalMultiArm <- system.file("extdata",
"dataset_survival_multi-arm.csv",
package = "rpact"

)
if (dataFileSurvivalMultiArm != "") {

datasetSurvivalMultiArm <- readDataset(dataFileSurvivalMultiArm)
datasetSurvivalMultiArm

}

End(Not run)

readDatasets Read Multiple Datasets

Description

Reads a data file and returns it as a list of dataset objects.

Usage

readDatasets(
file,
...,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
comment.char = "",
fileEncoding = "UTF-8"

)

Arguments

file A CSV file (see read.table).

... Further arguments to be passed to read.table.

274 resetLogLevel

header A logical value indicating whether the file contains the names of the variables
as its first line.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for readDatasets) the separator is a comma.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

dec The character used in the file for decimal points.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

Reads a file that was written by writeDatasets() before.

Value

Returns a list of Dataset objects.

See Also

• readDataset() for reading a single dataset,

• writeDatasets() for writing multiple datasets,

• writeDataset() for writing a single dataset.

Examples

Not run:
dataFile <- system.file("extdata", "datasets_rates.csv", package = "rpact")
if (dataFile != "") {

datasets <- readDatasets(dataFile)
datasets

}

End(Not run)

resetLogLevel Reset Log Level

Description

Resets the rpact log level.

resetOptions 275

Usage

resetLogLevel()

Details

This function resets the log level of the rpact internal log message system to the default value
"PROGRESS".

See Also

• getLogLevel() for getting the current log level,

• setLogLevel() for setting the log level.

Examples

Not run:
reset log level to default value
resetLogLevel()

End(Not run)

resetOptions Reset Options

Description

Resets the rpact options to their default values.

Usage

resetOptions(persist = TRUE)

Arguments

persist A logical value indicating whether the reset options should be saved persistently.
If TRUE, the options will be saved after resetting. Default is TRUE.

Details

This function resets all rpact options to their default values. If the persist parameter is set to
TRUE, the reset options will be saved to a configuration file.

Value

Returns TRUE if the options were successfully reset, FALSE otherwise.

276 rpact

Examples

Not run:
resetOptions()
resetOptions(persist = FALSE)

End(Not run)

rpact rpact - Confirmatory Adaptive Clinical Trial Design and Analysis

Description

rpact (R Package for Adaptive Clinical Trials) is a comprehensive package that enables the design,
simulation, and analysis of confirmatory adaptive group sequential designs. Particularly, the meth-
ods described in the recent monograph by Wassmer and Brannath (published by Springer, 2016)
are implemented. It also comprises advanced methods for sample size calculations for fixed sam-
ple size designs incl., e.g., sample size calculation for survival trials with piecewise exponentially
distributed survival times and staggered patients entry.

Details

rpact includes the classical group sequential designs (incl. user spending function approaches)
where the sample sizes per stage (or the time points of interim analysis) cannot be changed in a
data-driven way. Confirmatory adaptive designs explicitly allow for this under control of the Type I
error rate. They are either based on the combination testing or the conditional rejection probability
(CRP) principle. Both are available, for the former the inverse normal combination test and Fisher’s
combination test can be used.

Specific techniques of the adaptive methodology are also available, e.g., overall confidence in-
tervals, overall p-values, and conditional and predictive power assessments. Simulations can be
performed to assess the design characteristics of a (user-defined) sample size recalculation strategy.
Designs are available for trials with continuous, binary, and survival endpoint.

For more information please visit www.rpact.org. If you are interested in professional services
round about the package or need a comprehensive validation documentation to fulfill regulatory
requirements please visit www.rpact.com.

rpact is developed by

• Gernot Wassmer (<gernot.wassmer@rpact.com>) and

• Friedrich Pahlke (<friedrich.pahlke@rpact.com>).

Author(s)

Gernot Wassmer, Friedrich Pahlke

References

Wassmer, G., Brannath, W. (2016) Group Sequential and Confirmatory Adaptive Designs in Clinical
Trials (Springer Series in Pharmaceutical Statistics; doi:10.1007/9783319325620)

https://www.rpact.org
https://www.rpact.com
https://doi.org/10.1007/978-3-319-32562-0

saveOptions 277

See Also

Useful links:

• https://www.rpact.org

• https://www.rpact.com

• https://github.com/rpact-com/rpact

• https://rpact-com.github.io/rpact/

• https://rpact.shinyapps.io/connect

• Report bugs at https://github.com/rpact-com/rpact/issues

saveOptions Save Options

Description

Saves the current rpact options to a configuration file.

Usage

saveOptions()

Details

https://www.rpact.org
https://www.rpact.com
https://github.com/rpact-com/rpact
https://rpact-com.github.io/rpact/
https://rpact.shinyapps.io/connect
https://github.com/rpact-com/rpact/issues

278 setLogLevel

setLogLevel Set Log Level

Description

Sets the rpact log level.

Usage

setLogLevel(
logLevel = c("PROGRESS", "ERROR", "WARN", "INFO", "DEBUG", "TRACE", "DISABLED")

)

Arguments

logLevel The new log level to set. Can be one of "PROGRESS", "ERROR", "WARN",
"INFO", "DEBUG", "TRACE", "DISABLED". Default is "PROGRESS".

Details

This function sets the log level of the rpact internal log message system. By default only calcula-
tion progress messages will be shown on the output console, particularly getAnalysisResults()
shows this kind of messages. The output of these messages can be disabled by setting the log level
to "DISABLED".

See Also

• getLogLevel() for getting the current log level,

• resetLogLevel() for resetting the log level to default.

Examples

Not run:
show debug messages
setLogLevel("DEBUG")

disable all log messages
setLogLevel("DISABLED")

End(Not run)

setOutputFormat 279

setOutputFormat Set Output Format

Description

With this function the format of the standard outputs of all rpact objects can be changed and set
user defined respectively.

Usage

setOutputFormat(
parameterName = NA_character_,
...,
digits = NA_integer_,
nsmall = NA_integer_,
trimSingleZeros = NA,
futilityProbabilityEnabled = NA,
file = NA_character_,
resetToDefault = FALSE,
roundFunction = NA_character_,
persist = TRUE

)

Arguments

parameterName The name of the parameter whose output format shall be edited. Leave the
default NA_character_ if the output format of all parameters shall be edited.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits How many significant digits are to be used for a numeric value. The default,
NULL, uses getOption("digits"). Allowed values are 0 <= digits <= 20.

nsmall The minimum number of digits to the right of the decimal point in formatting
real numbers in non-scientific formats. Allowed values are 0 <= nsmall <= 20.

trimSingleZeros

If TRUE zero values will be trimmed in the output, e.g., "0.00" will displayed as
"0"

futilityProbabilityEnabled

If TRUE very small value (< 1e-09) will be displayed as "0", default is FALSE.

file An optional file name of an existing text file that contains output format defini-
tions (see Details for more information).

resetToDefault If TRUE all output formats will be reset to default value. Note that other settings
will be executed afterwards if specified, default is FALSE.

roundFunction A character value that specifies the R base round function to use, default is
NA_character_. Allowed values are "ceiling", "floor", "trunc", "round", "sig-
nif", and NA_character_.

persist A logical value indicating whether the output format settings should be saved
persistently. Default is TRUE.

280 setOutputFormat

Details

Output formats can be written to a text file (see getOutputFormat()). To load your personal
output formats read a formerly saved file at the beginning of your work with rpact, e.g. execute
setOutputFormat(file = "my_rpact_output_formats.txt").

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

1. p value

2. p.values

3. p-value

4. pValue

5. rpact.output.format.p.value

See Also

format for details on the function used internally to format the values.

Other output formats: getOutputFormat()

Examples

Not run:
show output format of p values
getOutputFormat("p.value")

set new p value output format
setOutputFormat("p.value", digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat("sample size", digits = 0, nsmall = 0, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size", digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat("sample size")
getSampleSizeMeans()
getOutputFormat("sample size")

End(Not run)

setupPackageTests 281

setupPackageTests Setup Package Tests

Description

This function sets up the package tests by downloading the test files and copying them to the rpact
installation directory.

Usage

setupPackageTests(token, secret)

Arguments

token A character string representing the token for authentication.

secret A character string representing the secret for authentication.

Details

The function first checks if the rpact package directory and its tests and testthat subdirectories
exist. If they do not exist, it stops with an error. It then downloads the test files to a temporary
directory and copies them to the tests directory of the rpact package. If all test files are copied
successfully, it removes the default test file.

Value

The function returns TRUE if all test files are downloaded and copied successfully to the rpact instal-
lation directory; otherwise, it returns FALSE.

References

For more information, please visit: https://www.rpact.org/vignettes/utilities/rpact_installation_
qualification/

SimulationResults Class for Simulation Results

Description

A class for simulation results.

Details

SimulationResults is the basic class for

• SimulationResultsMeans,

• SimulationResultsRates,

• SimulationResultsSurvival,

• SimulationResultsCountData,

https://www.rpact.org/vignettes/utilities/rpact_installation_qualification/
https://www.rpact.org/vignettes/utilities/rpact_installation_qualification/

282 SimulationResultsCountData

• SimulationResultsMultiArmMeans,

• SimulationResultsMultiArmRates,

• SimulationResultsMultiArmSurvival,

• SimulationResultsEnrichmentMeans,

• SimulationResultsEnrichmentRates, and

• SimulationResultsEnrichmentSurvival.

Fields

seed The seed used for random number generation. Is a numeric vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

SimulationResultsCountData

Class for Simulation Results Count Data

Description

A class for simulation results count data.

Details

Use getSimulationCounts() to create an object of this type.

Fields

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

groups The group numbers. Is a numeric vector.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

SimulationResultsEnrichmentMeans 283

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

seed The seed used for random number generation. Is a numeric vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

SimulationResultsEnrichmentMeans

Class for Simulation Results Enrichment Means

Description

A class for simulation results means in enrichment designs.

Details

Use getSimulationEnrichmentMeans() to create an object of this type.

Fields

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

effectList The list of subsets, prevalences and effect sizes with columns and number of rows
reflecting the different situations to be considered.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

284 SimulationResultsEnrichmentMeans

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

numberOfPopulations The number of populations in an enrichment design. Is a numeric matrix.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

populations The number of populations in an enrichment design. Is a numeric vector of length 1
containing a whole number.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedPopulationsPerStage The simulated number of rejected populations per stage.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

seed The seed used for random number generation. Is a numeric vector of length 1.

selectedPopulations The selected populations in enrichment designs.

selectPopulationsFunction An optional function that can be entered to define the way of how
populations are selected.

stDev The standard deviation used for sample size and power calculation. Is a numeric vector of
length 1.

stDevH1 The standard deviation under which the conditional power or sample size recalculation is
performed. Is a numeric vector of length 1.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

SimulationResultsEnrichmentRates 285

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

SimulationResultsEnrichmentRates

Class for Simulation Results Enrichment Rates

Description

A class for simulation results rates in enrichment designs.

Details

Use getSimulationEnrichmentRates() to create an object of this type.

Fields

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

effectList The list of subsets, prevalences and effect sizes with columns and number of rows
reflecting the different situations to be considered.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

286 SimulationResultsEnrichmentRates

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

numberOfPopulations The number of populations in an enrichment design. Is a numeric matrix.

piControlH1 The assumed probability in the reference group, for which the conditional power was
calculated. Is a numeric vector of length 1 containing a value between 0 and 1.

piTreatmentH1 The assumed probabilities in the active arm under which the sample size recalcu-
lation was performed and the conditional power was calculated.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

populations The number of populations in an enrichment design. Is a numeric vector of length 1
containing a whole number.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedPopulationsPerStage The simulated number of rejected populations per stage.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

seed The seed used for random number generation. Is a numeric vector of length 1.

selectedPopulations The selected populations in enrichment designs.

selectPopulationsFunction An optional function that can be entered to define the way of how
populations are selected.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

SimulationResultsEnrichmentSurvival 287

SimulationResultsEnrichmentSurvival

Class for Simulation Results Enrichment Survival

Description

A class for simulation results survival in enrichment designs.

Details

Use getSimulationEnrichmentSurvival() to create an object of this type.

Fields

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

calcEventsFunction An optional function that can be entered to define how event size is re-
calculated. By default, recalculation is performed with conditional power with specified
minNumberOfEventsPerStage and maxNumberOfEventsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

cumulativeEventsPerStage The cumulative number of events per stage. Is a numeric matrix.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

effectList The list of subsets, prevalences and effect sizes with columns and number of rows
reflecting the different situations to be considered.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

288 SimulationResultsEnrichmentSurvival

eventsPerStage Deprecated: use singleEventsPerStage or cumulativeEventsPerStage in-
stead Is a numeric matrix.

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

numberOfPopulations The number of populations in an enrichment design. Is a numeric matrix.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

populations The number of populations in an enrichment design. Is a numeric vector of length 1
containing a whole number.

populationEventsPerStage The cumulative number of events per stage Is a numeric matrix.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedPopulationsPerStage The simulated number of rejected populations per stage.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

seed The seed used for random number generation. Is a numeric vector of length 1.

selectedPopulations The selected populations in enrichment designs.

selectPopulationsFunction An optional function that can be entered to define the way of how
populations are selected.

singleNumberOfEventsPerStage Deprecated: use singleEventsPerArmAndStage or singleEventsPerSubsetAndStage
instead

SimulationResultsMeans 289

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

studyDuration The study duration for specified effect size. Is a positive numeric vector.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

SimulationResultsMeans

Class for Simulation Results Means

Description

A class for simulation results means.

Details

Use getSimulationMeans() to create an object of this type.

SimulationResultsMeans is the basic class for

• SimulationResultsMeans,

• SimulationResultsMultiArmMeans, and

• SimulationResultsEnrichmentMeans.

Fields

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

alternative The alternative hypothesis value(s) for testing means. Is a numeric vector.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

290 SimulationResultsMeans

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

groups The group numbers. Is a numeric vector.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

meanRatio Specifies if the sample size for one-sided testing of H0: mu1/mu2 = thetaH0 has been
calculated. Is a logical vector of length 1.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

overallReject The overall rejection probability. Is a numeric vector.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

seed The seed used for random number generation. Is a numeric vector of length 1.

stDev The standard deviation used for sample size and power calculation. Is a numeric vector of
length 1.

stDevH1 The standard deviation under which the conditional power or sample size recalculation is
performed. Is a numeric vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

SimulationResultsMultiArmMeans 291

SimulationResultsMultiArmMeans

Class for Simulation Results Multi-Arm Means

Description

A class for simulation results means in multi-arm designs.

Details

Use getSimulationMultiArmMeans() to create an object of this type.

Fields

activeArms The number of active treatment arms to be compared with control. Is a numeric vector
of length 1 containing a whole number.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

effectMatrix The matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

gED50 The ED50 of the sigmoid Emax model. Only necessary if typeOfShape = "sigmoidEmax"
has been specified. Is a numeric vector of length 1.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

292 SimulationResultsMultiArmMeans

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjectsPerStage Determines the maximum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

minNumberOfSubjectsPerStage Determines the minimum number of subjects per stage for data-
driven sample size recalculation. For two treatment arms, is the number of subjects for both
treatment arms. For multi-arm designs, is the minimum number of subjects per selected active
arm. Is a numeric vector of length kMax containing whole numbers.

muMaxVector The range of effect sizes for the treatment group with highest response for "linear"
and "sigmoidEmax" model. Is a numeric vector.

numberOfActiveArms The number of active arms in a multi-armed design. Is a numeric matrix.
plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages

are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedArmsPerStage The simulated number of rejected arms per stage.
rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.
sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of

stages times number of groups containing whole numbers.
seed The seed used for random number generation. Is a numeric vector of length 1.
selectArmsFunction An optional function that can be entered to define how treatment arms are

selected.
selectedArms The selected arms in multi-armed designs.
slope The slope of the sigmoid Emax model, if typeOfShape = "sigmoidEmax" Is a numeric

vector of length 1.
stDev The standard deviation used for sample size and power calculation. Is a numeric vector of

length 1.
stDevH1 The standard deviation under which the conditional power or sample size recalculation is

performed. Is a numeric vector of length 1.
successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the

trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

typeOfShape The shape of the dose-response relationship over the treatment groups. Is a character
vector of length 1.

SimulationResultsMultiArmRates 293

SimulationResultsMultiArmRates

Class for Simulation Results Multi-Arm Rates

Description

A class for simulation results rates in multi-arm designs.

Details

Use getSimulationMultiArmRates() to create an object of this type.

Fields

activeArms The number of active treatment arms to be compared with control. Is a numeric vector
of length 1 containing a whole number.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

effectMatrix The matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic ("testStatistic")
or effect estimate ("effectEstimate"). Is a character vector of length 1.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

gED50 The ED50 of the sigmoid Emax model. Only necessary if typeOfShape = "sigmoidEmax"
has been specified. Is a numeric vector of length 1.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

294 SimulationResultsMultiArmRates

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

numberOfActiveArms The number of active arms in a multi-armed design. Is a numeric matrix.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

piControlH1 The assumed probability in the reference group, for which the conditional power was
calculated. Is a numeric vector of length 1 containing a value between 0 and 1.

piH1 The assumed probability in the active treatment arm(s) under which the sample size recalcu-
lation is performed. Is a numeric vector of length 1 containing a value between 0 and 1.

piMaxVector The range of assumed probabilities for the treatment group with highest response for
"linear" and "sigmoidEmax" model.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedArmsPerStage The simulated number of rejected arms per stage.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

seed The seed used for random number generation. Is a numeric vector of length 1.

selectArmsFunction An optional function that can be entered to define how treatment arms are
selected.

selectedArms The selected arms in multi-armed designs.

slope The slope of the sigmoid Emax model, if typeOfShape = "sigmoidEmax" Is a numeric
vector of length 1.

successCriterion Defines when the study is stopped for efficacy at interim. "all" stops the
trial if the efficacy criterion has been fulfilled for all selected treatment arms/populations,
"atLeastOne" stops if at least one of the selected treatment arms/populations is shown to be
superior to control at interim. Is a character vector of length 1.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

typeOfSelection The way the treatment arms or populations are selected at interim. Is a character
vector of length 1.

typeOfShape The shape of the dose-response relationship over the treatment groups. Is a character
vector of length 1.

SimulationResultsMultiArmSurvival 295

SimulationResultsMultiArmSurvival

Class for Simulation Results Multi-Arm Survival

Description

A class for simulation results survival in multi-arm designs.

Details

Use getSimulationMultiArmSurvival() to create an object of this type.

Fields

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

activeArms The number of active treatment arms to be compared with control. Is a numeric vector
of length 1 containing a whole number.

adaptations Indicates whether or not an adaptation takes place at interim k. Is a logical vector of
length kMax minus 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

correlationComputation If "alternative", a correlation matrix according to Deng et al. (Bio-
metrics, 2019) accounting for the respective alternative is used for simulating log-rank statis-
tics in the many-to-one design. If "null", a constant correlation matrix valid under the null
hypothesis is used.

cumulativeEventsPerStage The cumulative number of events per stage. Is a numeric matrix.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

effectMatrix The matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

epsilonValue Needs to be specified if typeOfSelection = "epsilon". Is a numeric vector of
length 1.

296 SimulationResultsMultiArmSurvival

eventsPerStage Deprecated: use singleEventsPerStage or cumulativeEventsPerStage in-
stead Is a numeric matrix.

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

gED50 The ED50 of the sigmoid Emax model. Only necessary if typeOfShape = "sigmoidEmax"
has been specified. Is a numeric vector of length 1.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

maxNumberOfEventsPerStage Determines the maximum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

minNumberOfEventsPerStage Determines the minimum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

numberOfActiveArms The number of active arms in a multi-armed design. Is a numeric matrix.

omegaMaxVector The range of hazard ratios with highest response for "linear" and "sigmoidEmax"
model. Is a numeric vector.

plannedEvents Determines the number of cumulated (overall) events in survival designs when the
interim stages are planned. For two treatment arms, is the number of events for both treatment
arms. For multi-arm designs, refers to the overall number of events for the selected arms plus
control. Is a numeric vector of length kMax containing whole numbers.

rejectAtLeastOne The probability to reject at least one of the (multiple) hypotheses. Is a numeric
vector.

rejectedArmsPerStage The simulated number of rejected arms per stage.

rValue Needs to be specified if typeOfSelection = "rBest". Is a numeric vector of length 1.

seed The seed used for random number generation. Is a numeric vector of length 1.

selectArmsFunction An optional function that can be entered to define how treatment arms are
selected.

selectedArms The selected arms in multi-armed designs.

singleEventsPerArmAndStage The number of events per arm and stage that is used for the anal-
ysis.

singleEventsPerStage The single number of events per stage. Is a numeric matrix.

SimulationResultsRates 297

singleNumberOfEventsPerStage Deprecated: use singleEventsPerArmAndStage or singleEventsPerSubsetAndStage
instead

slope The slope of the sigmoid Emax model, if typeOfShape = "sigmoidEmax" Is a numeric
vector of length 1.

studyDuration The study duration for specified effect size. Is a positive numeric vector.

successPerStage The simulated success probabilities per stage where success is defined by user.
Is a numeric matrix.

threshold The selection criterion: treatment arm/population is only selected if effectMeasure
exceeds threshold. Either a single numeric value or a numeric vector of length activeArms
referring to a separate threshold condition for each treatment arm.

typeOfShape The shape of the dose-response relationship over the treatment groups. Is a character
vector of length 1.

SimulationResultsRates

Class for Simulation Results Rates

Description

A class for simulation results rates.

Details

Use getSimulationRates() to create an object of this type.

SimulationResultsRates is the basic class for

• SimulationResultsRates,

• SimulationResultsMultiArmRates, and

• SimulationResultsEnrichmentRates.

Fields

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

calcSubjectsFunction An optional function that can be entered to define how sample size is
recalculated. By default, recalculation is performed with conditional power with specified
minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

298 SimulationResultsRates

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

groups The group numbers. Is a numeric vector.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

overallReject The overall rejection probability. Is a numeric vector.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi1H1 The assumed probability in the active treatment group for two-group designs, or the assumed
probability for a one treatment group design, for which the conditional power was calculated.
Is a numeric vector of length 1 containing a value between 0 and 1.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

pi2H1 The assumed probability in the reference group for two-group designs, for which the condi-
tional power was calculated. Is a numeric vector of length 1 containing a value between 0 and
1.

plannedSubjects Determines the number of cumulated (overall) subjects when the interim stages
are planned. For two treatment arms, is the number of subjects for both treatment arms. For
multi-arm designs, refers to the number of subjects per selected active arm. Is a numeric vector
of length kMax containing whole numbers.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

riskRatio Specifies if the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 has been
calculated. Is a logical vector of length 1.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

seed The seed used for random number generation. Is a numeric vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

SimulationResultsSurvival 299

SimulationResultsSurvival

Class for Simulation Results Survival

Description

A class for simulation results survival.

Details

Use getSimulationSurvival() to create an object of this type.

SimulationResultsSurvival is the basic class for

• SimulationResultsSurvival,

• SimulationResultsMultiArmSurvival, and

• SimulationResultsEnrichmentSurvival.

Fields

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

allocation1 The number of subjects to be assigned to treatment 1 in subsequent order. Is a
numeric vector of length 1 containing a whole number.

allocation2 The number of subjects to be assigned to treatment 2 in subsequent order. Is a
numeric vector of length 1 containing a whole number.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

calcEventsFunction An optional function that can be entered to define how event size is re-
calculated. By default, recalculation is performed with conditional power with specified
minNumberOfEventsPerStage and maxNumberOfEventsPerStage.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

conditionalPowerAchieved The calculated conditional power, under the assumption of observed
or assumed effect sizes. Is a numeric matrix.

cumulativeEventsPerStage The cumulative number of events per stage. Is a numeric matrix.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

300 SimulationResultsSurvival

eventsNotAchieved The simulated number of cases how often the number of events was not
reached. Is a numeric matrix.

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

maxNumberOfEventsPerStage Determines the maximum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

maxNumberOfIterations The number of simulation iterations. Is a numeric vector of length 1
containing a whole number.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

median1 The assumed median survival time in the treatment group. Is a numeric vector.

median2 The assumed median survival time in the reference group. Is a numeric vector of length
1.

minNumberOfEventsPerStage Determines the minimum number of events per stage for data-
driven sample size recalculation. Is a numeric vector of length kMax containing whole num-
bers.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

numberOfSubjects1 In simulation results data set: The number of subjects under consideration in
treatment arm 1 when the interim analysis takes place.

numberOfSubjects2 In simulation results data set: The number of subjects under consideration in
treatment arm 2 when the interim analysis takes place.

overallReject The overall rejection probability. Is a numeric vector.

pi1 The assumed event rate in the treatment group. Is a numeric vector of length kMax containing
values between 0 and 1.

pi2 The assumed event rate in the control group. Is a numeric vector of length 1 containing a value
between 0 and 1.

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

plannedEvents Determines the number of cumulated (overall) events in survival designs when the
interim stages are planned. For two treatment arms, is the number of events for both treatment
arms. For multi-arm designs, refers to the overall number of events for the selected arms plus
control. Is a numeric vector of length kMax containing whole numbers.

StageResults 301

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

seed The seed used for random number generation. Is a numeric vector of length 1.

singleEventsPerStage The single number of events per stage. Is a numeric matrix.

studyDuration The study duration for specified effect size. Is a positive numeric vector.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

StageResults Basic Stage Results

Description

Basic class for stage results.

Details

StageResults is the basic class for

• StageResultsMeans,

• StageResultsRates,

• StageResultsSurvival,

• StageResultsMultiArmMeans,

• StageResultsMultiArmRates,

• StageResultsMultiArmSurvival,

• StageResultsEnrichmentMeans,

• StageResultsEnrichmentRates, and

• StageResultsEnrichmentSurvival.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

302 StageResultsEnrichmentMeans

StageResultsEnrichmentMeans

Stage Results Enrichment Means

Description

Class for stage results of enrichment means data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of enrichment means.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

overallStDevs The overall, i.e., cumulative standard deviations. Is a numeric vector of length
number of stages times number of groups.

overallPooledStDevs The overall pooled standard deviations. Is a numeric matrix.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

StageResultsEnrichmentRates 303

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

StageResultsEnrichmentRates

Stage Results Enrichment Rates

Description

Class for stage results of enrichment rates data.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of enrichment rates.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

304 StageResultsMeans

StageResultsEnrichmentSurvival

Stage Results Enrichment Survival

Description

Class for stage results of enrichment survival data.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of enrichment survival.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

StageResultsMeans Stage Results of Means

Description

Class for stage results of means.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of means.

StageResultsMultiArmMeans 305

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

... Names of dataInput.

StageResultsMultiArmMeans

Stage Results Multi Arm Means

Description

Class for stage results of multi arm means data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of multi arm means.

306 StageResultsMultiArmMeans

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

overallStDevs The overall, i.e., cumulative standard deviations. Is a numeric vector of length
number of stages times number of groups.

overallPooledStDevs The overall pooled standard deviations. Is a numeric matrix.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled", "pairwisePooled", "notPooled". Available options for enrichment
designs: "pooled", "pooledFromFull", "notPooled".

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

StageResultsMultiArmRates 307

StageResultsMultiArmRates

Stage Results Multi Arm Rates

Description

Class for stage results of multi arm rates data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of multi arm rates.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

308 StageResultsMultiArmSurvival

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

StageResultsMultiArmSurvival

Stage Results Multi Arm Survival

Description

Class for stage results of multi arm survival data

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of multi arm survival.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

StageResultsRates 309

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

StageResultsRates Stage Results of Rates

Description

Class for stage results of rates.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of rates.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

pValues The stage-wise p-values. Is a numeric vector of length kMax containing values between 0
and 1.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

... Names of dataInput.

310 StageResultsSurvival

StageResultsSurvival Stage Results of Survival Data

Description

Class for stage results survival data.

Details

This object cannot be created directly; use getStageResults with suitable arguments to create the
stage results of a dataset of survival data.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

testStatistics The stage-wise test statistics. Is a numeric vector of length kMax.

overallTestStatistics The overall, i.e., cumulated test statistics. Is a numeric vector of length
kMax.

separatePValues The p-values from the separate stages. Is a numeric matrix.

singleStepAdjustedPValues The adjusted p-value for testing multiple hypotheses per stage of
the trial.

overallPValues The overall, i.e., cumulated p-values. Is a numeric vector of length kMax con-
taining values between 0 and 1.

direction Specifies the direction of the alternative, is either "upper" or "lower". Only applicable
for one-sided testing.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

combInverseNormal The test statistics over stages for the inverse normal test. Is a numeric vector
of length kMax.

combFisher The test statistics over stages for Fisher’s combination test. Is a numeric vector of
length kMax containing values between 0 and 1.

effectSizes The stage-wise effect sizes. Is a numeric vector of length kMax.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

weightsFisher The weights for Fisher’s combination test. Is a numeric vector of length kMax.

weightsInverseNormal The weights for the inverse normal statistic. Is a numeric vector of length
kMax.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

... Names of dataInput.

summary.AnalysisResults 311

summary.AnalysisResults

Analysis Results Summary

Description

Displays a summary of AnalysisResults object.

Usage

S3 method for class 'AnalysisResults'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object An AnalysisResults object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the parameters and results of an analysis results object.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

312 summary.Dataset

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

summary.Dataset Dataset Summary

Description

Displays a summary of Dataset object.

Usage

S3 method for class 'Dataset'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object A Dataset object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the parameters and results of a dataset.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

summary.ParameterSet 313

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

summary.ParameterSet Parameter Set Summary

Description

Displays a summary of ParameterSet object.

Usage

S3 method for class 'ParameterSet'
summary(
object,
...,
type = 1,
digits = NA_integer_,
output = c("all", "title", "overview", "body"),
printObject = FALSE,
sep = NA_character_

)

314 summary.ParameterSet

Arguments

object A ParameterSet object.
... Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
digits Defines how many digits are to be used for numeric values. Must be a positive

integer of length 1.
output The output parts, default is "all".
printObject Show also the print output after the summary, default is FALSE.
sep The separator line between the summary and the optional print output, default is

"\n\n-----\n\n".

Details

Summarizes the parameters and results of a parameter set.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,
• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

summary.TrialDesignSet 315

summary.TrialDesignSet

Trial Design Set Summary

Description

Displays a summary of ParameterSet object.

Usage

S3 method for class 'TrialDesignSet'
summary(object, ..., type = 1, digits = NA_integer_)

Arguments

object A ParameterSet object.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

Details

Summarizes the trial designs.

Value

Returns a SummaryFactory object. The following generics (R generic functions) are available for
this result object:

• names() to obtain the field names,

• print() to print the object

Summary options

The following options can be set globally:

1. rpact.summary.output.size: one of c("small", "medium", "large"); defines how many
details will be included into the summary; default is "large", i.e., all available details are
displayed.

2. rpact.summary.justify: one of c("right", "left", "centre"); shall the values be right-
justified (the default), left-justified or centered.

3. rpact.summary.width: defines the maximum number of characters to be used per line (de-
fault is 83).

4. rpact.summary.intervalFormat: defines how intervals will be displayed in the summary,
default is "[%s; %s]".

5. rpact.summary.digits: defines how many digits are to be used for numeric values (default
is 3).

6. rpact.summary.digits.probs: defines how many digits are to be used for numeric values
(default is one more than value of rpact.summary.digits, i.e., 4).

316 testPackage

7. rpact.summary.trim.zeroes: if TRUE (default) zeroes will always displayed as "0", e.g.
"0.000" will become "0".

Example: options("rpact.summary.intervalFormat" = "%s - %s")

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

SummaryFactory Summary Factory

Description

Basic class for summaries

testPackage Test and Validate the rpact Package Installation

Description

This function ensures the correct installation of the rpact package by performing various tests. It
supports a comprehensive validation process, essential for GxP compliance and other regulatory
requirements.

Usage

testPackage(
outDir = ".",
...,
completeUnitTestSetEnabled = TRUE,
connection = list(token = NULL, secret = NULL),
testFileDirectory = NA_character_,
downloadTestsOnly = FALSE,
addWarningDetailsToReport = TRUE,
reportType = c("compact", "detailed", "Rout"),
testInstalledBasicPackages = TRUE,
scope = c("basic", "devel", "both", "internet", "all"),
openHtmlReport = TRUE,
keepSourceFiles = FALSE

)

testPackage 317

Arguments

outDir The absolute path to the output directory where all test results will be saved. By
default, the current working directory is used.

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

completeUnitTestSetEnabled

If TRUE (default), all existing unit tests will be executed; if FALSE, only a subset
of tests is run.

connection A list allowing owners of the rpact validation documentation to provide token
and secret credentials for full access to unit tests, enabling them to meet regu-
latory requirements (see www.rpact.com for more information).

testFileDirectory

An optional path pointing to a local directory containing test files.

downloadTestsOnly

If TRUE, the unit test files are only downloaded and not executed. Default is
FALSE.

addWarningDetailsToReport

If TRUE, additional warning details are included in the test report. Default is
TRUE.

reportType The type of report to generate. Can be "compact", "detailed", or "Rout".

testInstalledBasicPackages

If TRUE, tests for installed basic R packages are included, default is TRUE. For
more information, see testInstalledBasic.

scope The scope of the basic R package tests to run. Can be "basic", "devel",
"both", "internet", or "all". Default is "basic". For more information,
see testInstalledBasic. Only available if testInstalledBasicPackages =
TRUE.

openHtmlReport If TRUE, the HTML report is opened after the tests are completed, default is
TRUE.

keepSourceFiles

If TRUE, the source files are kept after the tests are completed. A copy of them
can be found in the subdirectory src.

Details

This function is integral to the installation qualification (IQ) process of the rpact package, ensuring
it meets quality standards and functions as expected. A directory named rpact-tests is created
within the specified output directory, where all test files are downloaded from a secure resource and
executed. Results are saved in the file testthat.Rout, located in the rpact-tests directory.

Installation qualification is a critical step in the validation process. Without successful IQ, the pack-
age cannot be considered fully validated. To gain access to the full set of unit tests, users must pro-
vide token and secret credentials, which are distributed to members of the rpact user group as part
of the validation documentation. For more information, see vignette rpact_installation_qualification.

Value

Invisibly returns an InstallationQualificationResult) object.

https://www.rpact.com
https://www.rpact.org/vignettes/utilities/rpact_installation_qualification/

318 test_plan_section

References

For more information, please visit: https://www.rpact.org/vignettes/utilities/rpact_installation_
qualification/

Examples

Not run:
Set the output directory
setwd("/path/to/output")

Basic usage
testPackage()

Perform all unit tests with access credentials
testPackage(

connection = list(
token = "your_token_here",
secret = "your_secret_here"

)
)

Download test files without executing them
testPackage(downloadTestsOnly = TRUE)

End(Not run)

test_plan_section Test Plan Section

Description

The section title or description will be used in the formal validation documentation. For more
information visit https://www.rpact.com

Usage

test_plan_section(section)

Arguments

section The section title or description.

https://www.rpact.org/vignettes/utilities/rpact_installation_qualification/
https://www.rpact.org/vignettes/utilities/rpact_installation_qualification/
https://www.rpact.com

TrialDesign 319

TrialDesign Basic Trial Design

Description

Basic class for trial designs.

Details

TrialDesign is the basic class for

• TrialDesignFisher,

• TrialDesignGroupSequential,

• TrialDesignInverseNormal, and

• TrialDesignConditionalDunnett.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

320 TrialDesignCharacteristics

TrialDesignCharacteristics

Trial Design Characteristics

Description

Class for trial design characteristics.

Details

TrialDesignCharacteristics contains all fields required to collect the characteristics of a de-
sign. This object should not be created directly; use getDesignCharacteristics with suitable
arguments to create it.

Fields

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

shift The shift value for group sequential test characteristics. Is a numeric vector of length 1.

inflationFactor The relative increase of maximum sample size in a group sequential design as
compared to the fixed sample size case. Is a positive numeric vector of length 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

information The information over stages needed to achieve power of the specified design. Is a
numeric vector of length kMax.

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax containing
values between 0 and 1.

rejectionProbabilities The rejection probabilities over treatments arms or populations and
stages. Is a numeric vector.

futilityProbabilities The overall probabilities of stopping the trial for futility. Is a numeric
vector of length kMax minus 1 containing values between 0 and 1.

averageSampleNumber1 The expected sample size under H1. Is a positive numeric vector of length
1.

averageSampleNumber01 The expected sample size for a value between H0 and H1. Is a positive
numeric vector of length 1.

averageSampleNumber0 The expected sample size under H0. Is a positive numeric vector of length
1.

See Also

getDesignCharacteristics for getting the design characteristics.

TrialDesignConditionalDunnett 321

TrialDesignConditionalDunnett

Conditional Dunnett Design

Description

Trial design for conditional Dunnett tests.

Details

This object should not be created directly; use getDesignConditionalDunnett with suitable ar-
guments to create a conditional Dunnett test design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

informationAtInterim The information to be expected at interim, default is informationAtIn-
terim = 0.5. Is a numeric vector of length 1 containing a value between 0 and 1.

secondStageConditioning The way the second stage p-values are calculated within the closed
system of hypotheses. If FALSE, the unconditional adjusted p-values are used, otherwise con-
ditional adjusted p-values are calculated. Is a logical vector of length 1.

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

See Also

getDesignConditionalDunnett for creating a conditional Dunnett test design.

322 TrialDesignFisher

TrialDesignFisher Fisher Design

Description

Trial design for Fisher’s combination test.

Details

This object should not be created directly; use getDesignFisher with suitable arguments to create
a Fisher combination test design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

method "equalAlpha", "fullAlpha", "noInteraction", or "userDefinedAlpha", default is "equalAl-
pha". For details, see Wassmer, 1999, doi: 10.1002/(SICI)1521-4036(199906)41:3%3C279::AID-
BIMJ279%3E3.0.CO;2-V.

alpha0Vec The stopping for futility bounds for stage-wise p-values in Fisher’s combination test.
Is a numeric vector of length kMax minus 1 containing values between 0 and 1.

scale The scale for Fisher’s combination test. Numeric vector of length kMax-1 that applies to
Fisher’s design with unequally spaced information rates. Is a numeric vector of length kMax
minus 1 containing values between 0 and 1.

nonStochasticCurtailment If TRUE, the stopping rule is based on the phenomenon of non-stochastic
curtailment rather than stochastic reasoning. Is a logical vector of length 1.

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

simAlpha The observed alpha error if simulations have been performed. Is a numeric vector of
length 1 containing a value between 0 and 1.

TrialDesignGroupSequential 323

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

See Also

getDesignFisher for creating a Fisher combination test design.

TrialDesignGroupSequential

Group Sequential Design

Description

Trial design for group sequential design.

Details

This object should not be created directly; use getDesignGroupSequential() with suitable argu-
ments to create a group sequential design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

typeOfDesign The type of design. Is a character vector of length 1.

beta The Type II error rate necessary for providing sample size calculations (e.g., in getSampleSizeMeans),
beta spending function designs, or optimum designs, default is 0.20. Is a numeric vector of
length 1 containing a value between 0 and 1.

deltaWT Delta for Wang & Tsiatis Delta class. Is a numeric vector of length 1.

324 TrialDesignGroupSequential

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries. Is a numeric vector of
length 1.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 (accepting H0) boundaries. Is a
numeric vector of length 1.

futilityBounds The futility bounds for each stage of the trial. Is a numeric vector of length kMax.

gammaA The parameter for the alpha spending function. Is a numeric vector of length 1.

gammaB The parameter for the beta spending function. Is a numeric vector of length 1.

optimizationCriterion The optimization criterion for optimum design within the Wang & Tsi-
atis class ("ASNH1", "ASNIFH1", "ASNsum"), default is "ASNH1".

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

betaSpent The cumulative beta level spent at each stage of the trial. Only applicable for beta-
spending designs. Is a numeric vector of length kMax containing values between 0 and 1.

typeBetaSpending The type of beta spending. Is a character vector of length 1.

userBetaSpending The user defined beta spending. Contains the cumulative beta-spending up to
each interim stage. Is a numeric vector of length kMax containing values between 0 and 1.

efficacyStops Logical vector indicating efficacy stops Is a logical vector of length kMax minus
1.

futilityStops Logical vector indicating futility stops Is a logical vector of length kMax minus 1.

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax containing
values between 0 and 1.

twoSidedPower Specifies if power is defined two-sided at each stage of the trial. Is a logical vector
of length 1.

constantBoundsHP The constant bounds up to stage kMax - 1 for the Haybittle & Peto design
(default is 3). Is a numeric vector of length 1.

betaAdjustment If TRUE, beta spending values are linearly adjusted if an overlapping of deci-
sion regions for futility stopping at earlier stages occurs. Only applicable for two-sided beta-
spending designs. Is a logical vector of length 1.

delayedInformation Delay of information for delayed response designs. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

decisionCriticalValues The decision critical values for each stage of the trial in a delayed
response design. Is a numeric vector of length kMax.

reversalProbabilities The probability to switch from stopping the trial for success (or futility)
and reaching non-rejection (or rejection) in a delayed response design. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

See Also

getDesignGroupSequential() for creating a group sequential design.

TrialDesignInverseNormal 325

TrialDesignInverseNormal

Inverse Normal Design

Description

Trial design for inverse normal method.

Details

This object should not be created directly; use getDesignInverseNormal() with suitable argu-
ments to create a inverse normal design.

Fields

kMax The maximum number of stages K. Is a numeric vector of length 1 containing a whole number.

alpha The significance level alpha, default is 0.025. Is a numeric vector of length 1 containing a
value between 0 and 1.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

userAlphaSpending The user defined alpha spending. Contains the cumulative alpha-spending
(type I error rate) up to each interim stage. Is a numeric vector of length kMax containing
values between 0 and 1.

criticalValues The critical values for each stage of the trial. Is a numeric vector of length kMax.

stageLevels The adjusted significance levels to reach significance in a group sequential design.
Is a numeric vector of length kMax containing values between 0 and 1.

alphaSpent The cumulative alpha spent at each stage. Is a numeric vector of length kMax contain-
ing values between 0 and 1.

bindingFutility If TRUE, the calculation of the critical values is affected by the futility bounds
and the futility threshold is binding in the sense that the study must be stopped if the futility
condition was reached (default is FALSE) Is a logical vector of length 1.

tolerance The numerical tolerance, default is 1e-06. Is a numeric vector of length 1.

typeOfDesign The type of design. Is a character vector of length 1.

beta The Type II error rate necessary for providing sample size calculations (e.g., in getSampleSizeMeans),
beta spending function designs, or optimum designs, default is 0.20. Is a numeric vector of
length 1 containing a value between 0 and 1.

deltaWT Delta for Wang & Tsiatis Delta class. Is a numeric vector of length 1.

deltaPT1 Delta1 for Pampallona & Tsiatis class rejecting H0 boundaries. Is a numeric vector of
length 1.

deltaPT0 Delta0 for Pampallona & Tsiatis class rejecting H1 (accepting H0) boundaries. Is a
numeric vector of length 1.

futilityBounds The futility bounds for each stage of the trial. Is a numeric vector of length kMax.

gammaA The parameter for the alpha spending function. Is a numeric vector of length 1.

gammaB The parameter for the beta spending function. Is a numeric vector of length 1.

326 TrialDesignPlan

optimizationCriterion The optimization criterion for optimum design within the Wang & Tsi-
atis class ("ASNH1", "ASNIFH1", "ASNsum"), default is "ASNH1".

sided Describes if the alternative is one-sided (1) or two-sided (2). Is a numeric vector of length 1
containing a whole number.

betaSpent The cumulative beta level spent at each stage of the trial. Only applicable for beta-
spending designs. Is a numeric vector of length kMax containing values between 0 and 1.

typeBetaSpending The type of beta spending. Is a character vector of length 1.

userBetaSpending The user defined beta spending. Contains the cumulative beta-spending up to
each interim stage. Is a numeric vector of length kMax containing values between 0 and 1.

efficacyStops Logical vector indicating efficacy stops Is a logical vector of length kMax minus
1.

futilityStops Logical vector indicating futility stops Is a logical vector of length kMax minus 1.

power The one-sided power at each stage of the trial. Is a numeric vector of length kMax containing
values between 0 and 1.

twoSidedPower Specifies if power is defined two-sided at each stage of the trial. Is a logical vector
of length 1.

constantBoundsHP The constant bounds up to stage kMax - 1 for the Haybittle & Peto design
(default is 3). Is a numeric vector of length 1.

betaAdjustment If TRUE, beta spending values are linearly adjusted if an overlapping of deci-
sion regions for futility stopping at earlier stages occurs. Only applicable for two-sided beta-
spending designs. Is a logical vector of length 1.

delayedInformation Delay of information for delayed response designs. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

decisionCriticalValues The decision critical values for each stage of the trial in a delayed
response design. Is a numeric vector of length kMax.

reversalProbabilities The probability to switch from stopping the trial for success (or futility)
and reaching non-rejection (or rejection) in a delayed response design. Is a numeric vector of
length kMax minus 1 containing values between 0 and 1.

See Also

getDesignInverseNormal() for creating a inverse normal design.

TrialDesignPlan Basic Trial Design Plan

Description

Basic class for trial design plans.

Details

TrialDesignPlan is the basic class for

• TrialDesignPlanMeans,

• TrialDesignPlanRates, and

• TrialDesignPlanSurvival.

TrialDesignPlanCountData 327

TrialDesignPlanCountData

Trial Design Plan Count Data

Description

Trial design plan for count data.

Details

This object cannot be created directly; use getSampleSizeCounts() with suitable arguments to
create a design plan for a dataset of rates.

Fields

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

groups The group numbers. Is a numeric vector.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

lambda A numeric value or vector that represents the assumed rate of a homogeneous Poisson
process in the pooled treatment groups Is a numeric vector.

theta A vector of standardized effect sizes (theta values). Is a numeric vector.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

328 TrialDesignPlanMeans

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-

TrialDesignPlanMeans 329

groups The group numbers. Is a numeric vector.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

numberOfSubjects1 In simulation results data set: The number of subjects under consideration in
treatment arm 1 when the interim analysis takes place.

numberOfSubjects2 In simulation results data set: The number of subjects under consideration in
treatment arm 2 when the interim analysis takes place.

expectedNumberOfSubjectsH0 The expected number of subjects under H0. Is a numeric vector.

expectedNumberOfSubjectsH01 The expected number of subjects under a value between H0 and
H1. Is a numeric vector.

expectedNumberOfSubjectsH1 The expected number of subjects under H1. Is a numeric vector.

criticalValuesEffectScale The critical values for each stage of the trial on the effect size scale.

criticalValuesEffectScaleLower The lower critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

330 TrialDesignPlanRates

criticalValuesEffectScaleUpper The upper critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesPValueScale The critical values for each stage of the trial on the p-value scale.

futilityBoundsEffectScale The futility bounds for each stage of the trial on the effect size
scale. Is a numeric matrix.

futilityBoundsEffectScaleLower The lower futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsEffectScaleUpper The upper futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsPValueScale The futility bounds for each stage of the trial on the p-value scale.
Is a numeric matrix.

TrialDesignPlanRates Trial Design Plan Rates

Description

Trial design plan for rates.

Details

This object cannot be created directly; use getSampleSizeRates() with suitable arguments to
create a design plan for a dataset of rates.

Fields

riskRatio Specifies if the sample size for one-sided testing of H0: pi1 / pi2 = thetaH0 has been
calculated. Is a logical vector of length 1.

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

conservative Conservative sample size calculation enabled or not Is a logical vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

groups The group numbers. Is a numeric vector.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

effect The effect for randomly creating normally distributed responses. Is a numeric vector of
length kMax.

TrialDesignPlanRates 331

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

expectedNumberOfSubjects The expected number of subjects under specified alternative.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

numberOfSubjects1 In simulation results data set: The number of subjects under consideration in
treatment arm 1 when the interim analysis takes place.

numberOfSubjects2 In simulation results data set: The number of subjects under consideration in
treatment arm 2 when the interim analysis takes place.

expectedNumberOfSubjectsH0 The expected number of subjects under H0. Is a numeric vector.

expectedNumberOfSubjectsH01 The expected number of subjects under a value between H0 and
H1. Is a numeric vector.

expectedNumberOfSubjectsH1 The expected number of subjects under H1. Is a numeric vector.

criticalValuesEffectScale The critical values for each stage of the trial on the effect size scale.

criticalValuesEffectScaleLower The lower critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesEffectScaleUpper The upper critical values for each stage of the trial on the
effect size scale. Is a numeric matrix.

criticalValuesPValueScale The critical values for each stage of the trial on the p-value scale.

futilityBoundsEffectScale The futility bounds for each stage of the trial on the effect size
scale. Is a numeric matrix.

futilityBoundsEffectScaleLower The lower futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsEffectScaleUpper The upper futility bounds for each stage of the trial on the
effect size scale. Is a numeric matrix.

futilityBoundsPValueScale The futility bounds for each stage of the trial on the p-value scale.
Is a numeric matrix.

332 TrialDesignPlanSurvival

TrialDesignPlanSurvival

Trial Design Plan Survival

Description

Trial design plan for survival data.

Details

This object cannot be created directly; use getSampleSizeSurvival() with suitable arguments to
create a design plan for a dataset of survival data.

Fields

thetaH0 The difference or assumed effect under H0. Is a numeric vector of length 1.

typeOfComputation The type of computation used, either "Schoenfeld", "Freedman", or "HsiehFreedman".

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

pi1 The assumed event rate in the treatment group. Is a numeric vector of length kMax containing
values between 0 and 1.

pi2 The assumed event rate in the control group. Is a numeric vector of length 1 containing a value
between 0 and 1.

median1 The assumed median survival time in the treatment group. Is a numeric vector.

median2 The assumed median survival time in the reference group. Is a numeric vector of length
1.

lambda1 The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.

lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

maxNumberOfSubjects1 The maximum number of subjects in treatment arm 1. Is a numeric vec-
tor.

maxNumberOfSubjects2 The maximum number of subjects in treatment arm 2. Is a numeric vec-
tor.

maxNumberOfEvents The maximum number of events for power calculations. Is a positive numeric
vector of length kMax.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

optimumAllocationRatio The allocation ratio that is optimum with respect to the overall sample
size at given power. Is a logical vector of length 1.

accountForObservationTimes If FALSE, only the event rates are used for the calculation of the
maximum number of subjects. Is a logical vector of length 1.

TrialDesignPlanSurvival 333

eventTime The assumed time under which the event rates are calculated. Is a numeric vector of
length 1.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.

totalAccrualTime The total accrual time, i.e., the maximum of accrualTime. Is a positive nu-
meric vector of length 1.

accrualIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

accrualIntensityRelative The relative accrual intensities.

kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

followUpTime The assumed follow-up time for the study. Is a numeric vector of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

chi The calculated event probability at end of trial. Is a numeric vector.

expectedNumberOfEvents The expected number of events under specified alternative. Is a nu-
meric vector.

eventsFixed The number of events in a fixed sample size design. Is a numeric vector.

nFixed The sample size in a fixed (one-stage) design. Is a positive numeric vector.

nFixed1 The sample size in treatment arm 1 in a fixed (one-stage) design. Is a positive numeric
vector.

nFixed2 The sample size in treatment arm 2 in a fixed (one-stage) design. Is a positive numeric
vector.

overallReject The overall rejection probability. Is a numeric vector.

rejectPerStage The probability to reject a hypothesis per stage of the trial. Is a numeric matrix.

futilityStop In simulation results data set: indicates whether trial is stopped for futility or not.

futilityPerStage The per-stage probabilities of stopping the trial for futility. Is a numeric ma-
trix.

earlyStop The probability to stopping the trial either for efficacy or futility. Is a numeric vector.

informationRates The information rates (that must be fixed prior to the trial), default is (1:kMax)
/ kMax. Is a numeric vector of length kMax containing values between 0 and 1.

analysisTime The estimated time of analysis. Is a numeric matrix.

studyDurationH1 The study duration under the alternative hypothesis. Is a positive numeric vec-
tor.

studyDuration The study duration for specified effect size. Is a positive numeric vector.

maxStudyDuration The maximum study duration in survival designs. Is a numeric vector.

eventsPerStage Deprecated: use singleEventsPerStage or cumulativeEventsPerStage in-
stead Is a numeric matrix.

singleEventsPerStage The single number of events per stage. Is a numeric matrix.

cumulativeEventsPerStage The cumulative number of events per stage. Is a numeric matrix.

334 TrialDesignSet

expectedEventsH0 The expected number of events under H0. Is a numeric vector.
expectedEventsH01 The expected number of events under a value between H0 and H1. Is a

numeric vector.
expectedEventsH1 The expected number of events under H1. Is a numeric vector.
numberOfSubjects In simulation results data set: The number of subjects under consideration

when the interim analysis takes place.
numberOfSubjects1 In simulation results data set: The number of subjects under consideration in

treatment arm 1 when the interim analysis takes place.
numberOfSubjects2 In simulation results data set: The number of subjects under consideration in

treatment arm 2 when the interim analysis takes place.
expectedNumberOfSubjectsH1 The expected number of subjects under H1. Is a numeric vector.
expectedNumberOfSubjects The expected number of subjects under specified alternative.
criticalValuesEffectScale The critical values for each stage of the trial on the effect size scale.
criticalValuesEffectScaleLower The lower critical values for each stage of the trial on the

effect size scale. Is a numeric matrix.
criticalValuesEffectScaleUpper The upper critical values for each stage of the trial on the

effect size scale. Is a numeric matrix.
criticalValuesPValueScale The critical values for each stage of the trial on the p-value scale.
futilityBoundsEffectScale The futility bounds for each stage of the trial on the effect size

scale. Is a numeric matrix.
futilityBoundsEffectScaleLower The lower futility bounds for each stage of the trial on the

effect size scale. Is a numeric matrix.
futilityBoundsEffectScaleUpper The upper futility bounds for each stage of the trial on the

effect size scale. Is a numeric matrix.
futilityBoundsPValueScale The futility bounds for each stage of the trial on the p-value scale.

Is a numeric matrix.

TrialDesignSet Class for trial design sets.

Description

TrialDesignSet is a class for creating a collection of different trial designs.

Details

This object cannot be created directly; better use getDesignSet() with suitable arguments to create
a set of designs.

Fields

designs The trial designs to be compared.
design The trial design.
variedParameters A character vector containing the names of the parameters that vary between

designs.

See Also

getDesignSet()

utilitiesForPiecewiseExponentialDistribution 335

utilitiesForPiecewiseExponentialDistribution

The Piecewise Exponential Distribution

Description

Distribution function, quantile function and random number generation for the piecewise exponen-
tial distribution.

Usage

getPiecewiseExponentialDistribution(
time,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

ppwexp(t, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialQuantile(
quantile,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

qpwexp(q, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

getPiecewiseExponentialRandomNumbers(
n,
...,
piecewiseSurvivalTime = NA_real_,
piecewiseLambda = NA_real_,
kappa = 1

)

rpwexp(n, ..., s = NA_real_, lambda = NA_real_, kappa = 1)

Arguments

... Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of

336 utilitiesForPiecewiseExponentialDistribution

the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

t, time Vector of time values.
s, piecewiseSurvivalTime

Vector of start times defining the "time pieces".
lambda, piecewiseLambda

Vector of lambda values (hazard rates) corresponding to the start times.

q, quantile Vector of quantiles.

n Number of observations.

Details

getPiecewiseExponentialDistribution() (short: ppwexp()), getPiecewiseExponentialQuantile()
(short: qpwexp()), and getPiecewiseExponentialRandomNumbers() (short: rpwexp()) provide
probabilities, quantiles, and random numbers according to a piecewise exponential or a Weibull dis-
tribution. The piecewise definition is performed through a vector of starting times (piecewiseSurvivalTime)
and a vector of hazard rates (piecewiseLambda). You can also use a list that defines the starting
times and piecewise lambdas together and define piecewiseSurvivalTime as this list. The list needs
to have the form, e.g., piecewiseSurvivalTime <- list("0 - <6" = 0.025, "6 - <9" = 0.04, "9 - <15"
= 0.015, ">=15" = 0.007) . For the Weibull case, you can also specify a shape parameter kappa in
order to calculate probabilities, quantiles, or random numbers. In this case, no piecewise definition
is possible, i.e., only piecewiseLambda (as a single value) and kappa need to be specified.

Value

A numeric value or vector will be returned.

Examples

Not run:
Calculate probabilties for a range of time values for a
piecewise exponential distribution with hazard rates
0.025, 0.04, 0.015, and 0.007 in the intervals
[0, 6), [6, 9), [9, 15), [15, Inf), respectively,
and re-return the time values:
piecewiseSurvivalTime <- list(

"0 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,
">=15" = 0.01

)
y <- getPiecewiseExponentialDistribution(seq(0, 150, 15),

piecewiseSurvivalTime = piecewiseSurvivalTime
)
getPiecewiseExponentialQuantile(y,

piecewiseSurvivalTime = piecewiseSurvivalTime
)

End(Not run)

utilitiesForSurvivalTrials 337

utilitiesForSurvivalTrials

Survival Helper Functions for Conversion of Pi, Lambda, Median

Description

Functions to convert pi, lambda and median values into each other.

Usage

getLambdaByPi(piValue, eventTime = 12, kappa = 1)

getLambdaByMedian(median, kappa = 1)

getHazardRatioByPi(pi1, pi2, eventTime = 12, kappa = 1)

getPiByLambda(lambda, eventTime = 12, kappa = 1)

getPiByMedian(median, eventTime = 12, kappa = 1)

getMedianByLambda(lambda, kappa = 1)

getMedianByPi(piValue, eventTime = 12, kappa = 1)

Arguments

piValue, pi1, pi2, lambda, median
Value that shall be converted.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale = 1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate'.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiseLambda
= 0.01, kappa = 4.2) and pweibull(q = 130, shape = 4.2, scale = 1 / 0.01)
provide the same result.

Details

Can be used, e.g., to convert median values into pi or lambda values for usage in getSampleSizeSurvival()
or getPowerSurvival().

Value

Returns a numeric value or vector will be returned.

338 writeDataset

writeDataset Write Dataset

Description

Writes a dataset to a CSV file.

Usage

writeDataset(
dataset,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",
eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

Arguments

dataset A dataset.
file The target CSV file.
... Further arguments to be passed to write.table.
append Logical. Only relevant if file is a character string. If TRUE, the output is appended

to the file. If FALSE, any existing file of the name is destroyed.
quote The set of quoting characters. To disable quoting altogether, use quote = "". See

scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by this
character. If sep = "," (the default for writeDataset) the separator is a comma.

eol The character(s) to print at the end of each line (row).
na The string to use for missing values in the data.
dec The character used in the file for decimal points.
row.names Either a logical value indicating whether the row names of dataset are to be

written along with dataset, or a character vector of row names to be written.
col.names Either a logical value indicating whether the column names of dataset are to

be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDataset)
or "escape".

writeDatasets 339

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

writeDataset() is a wrapper function that coerces the dataset to a data frame and uses
write.table to write it to a CSV file.

See Also

• writeDatasets() for writing multiple datasets,
• readDataset() for reading a single dataset,
• readDatasets() for reading multiple datasets.

Examples

Not run:
datasetOfRates <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
writeDataset(datasetOfRates, "dataset_rates.csv")

End(Not run)

writeDatasets Write Multiple Datasets

Description

Writes a list of datasets to a CSV file.

Usage

writeDatasets(
datasets,
file,
...,
append = FALSE,
quote = TRUE,
sep = ",",
eol = "\n",
na = "NA",
dec = ".",
row.names = TRUE,
col.names = NA,
qmethod = "double",
fileEncoding = "UTF-8"

)

340 writeDatasets

Arguments

datasets A list of datasets.

file The target CSV file.

... Further arguments to be passed to write.table.

append Logical. Only relevant if file is a character string. If TRUE, the output is appended
to the file. If FALSE, any existing file of the name is destroyed.

quote The set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behavior on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

sep The field separator character. Values on each line of the file are separated by
this character. If sep = "," (the default for writeDatasets) the separator is a
comma.

eol The character(s) to print at the end of each line (row).

na The string to use for missing values in the data.

dec The character used in the file for decimal points.

row.names Either a logical value indicating whether the row names of dataset are to be
written along with dataset, or a character vector of row names to be written.

col.names Either a logical value indicating whether the column names of dataset are to
be written along with dataset, or a character vector of column names to be
written. See the section on ’CSV files’ for the meaning of col.names = NA.

qmethod A character string specifying how to deal with embedded double quote charac-
ters when quoting strings. Must be one of "double" (default in writeDatasets)
or "escape".

fileEncoding Character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ’Encoding’ section of
the help for file, the ’R Data Import/Export Manual’ and ’Note’.

Details

The format of the CSV file is optimized for usage of readDatasets().

See Also

• writeDataset() for writing a single dataset,

• readDatasets() for reading multiple datasets,

• readDataset() for reading a single dataset.

Examples

Not run:
d1 <- getDataset(

n1 = c(11, 13, 12, 13),
n2 = c(8, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(3, 5, 5, 6)

)
d2 <- getDataset(

n1 = c(9, 13, 12, 13),

writeDatasets 341

n2 = c(6, 10, 9, 11),
events1 = c(10, 10, 12, 12),
events2 = c(4, 5, 5, 6)

)
datasets <- list(d1, d2)
writeDatasets(datasets, "datasets_rates.csv")

End(Not run)

Index

∗ analysis functions
getAnalysisResults, 49
getClosedCombinationTestResults,

54
getClosedConditionalDunnettTestResults,

56
getConditionalPower, 57
getConditionalRejectionProbabilities,

60
getFinalConfidenceInterval, 83
getFinalPValue, 85
getRepeatedConfidenceIntervals,

118
getRepeatedPValues, 120
getStageResults, 189
getTestActions, 192

∗ design functions
getDesignCharacteristics, 67
getDesignConditionalDunnett, 69
getDesignFisher, 70
getDesignGroupSequential, 72
getDesignInverseNormal, 76
getGroupSequentialProbabilities,

86
getPowerAndAverageSampleNumber,

102
∗ internal

AccrualTime, 9
AnalysisResults, 10
AnalysisResultsConditionalDunnett,

11
AnalysisResultsEnrichment, 12
AnalysisResultsEnrichmentFisher,

12
AnalysisResultsEnrichmentInverseNormal,

13
AnalysisResultsFisher, 15
AnalysisResultsGroupSequential, 16
AnalysisResultsInverseNormal, 17
AnalysisResultsMultiArm, 19
AnalysisResultsMultiArmFisher, 19
AnalysisResultsMultiArmInverseNormal,

20

AnalysisResultsMultiHypotheses, 22
as.data.frame.AnalysisResults, 22
as.data.frame.ParameterSet, 23
as.data.frame.PowerAndAverageSampleNumberResult,

23
as.data.frame.StageResults, 24
as.data.frame.TrialDesign, 25
as.data.frame.TrialDesignCharacteristics,

26
as.data.frame.TrialDesignPlan, 27
as.data.frame.TrialDesignSet, 28
as.matrix.FieldSet, 29
checkInstallationQualificationStatus,

32
ClosedCombinationTestResults, 32
ConditionalPowerResults, 33
ConditionalPowerResultsEnrichmentMeans,

34
ConditionalPowerResultsEnrichmentRates,

34
ConditionalPowerResultsMeans, 35
ConditionalPowerResultsRates, 36
ConditionalPowerResultsSurvival,

36
dataEnrichmentMeans, 37
dataEnrichmentMeansStratified, 37
dataEnrichmentRates, 38
dataEnrichmentRatesStratified, 38
dataEnrichmentSurvival, 38
dataEnrichmentSurvivalStratified,

39
dataMeans, 39
dataMultiArmMeans, 39
dataMultiArmRates, 40
dataMultiArmSurvival, 40
dataRates, 40
Dataset, 41
DatasetMeans, 41
DatasetRates, 42
DatasetSurvival, 42
dataSurvival, 43
disableStartupMessages, 43
enableStartupMessages, 44

342

INDEX 343

EventProbabilities, 45
FieldSet, 46
getLambdaStepFunction, 88
getLogLevel, 89
getLongFormat, 89
getParameterCaption, 94
getParameterName, 95
getParameterType, 96
getPlotSettings, 101
getSystemIdentifier, 191
getWideFormat, 193
InstallationQualificationResult,

193
kableParameterSet, 194
knit_print.FieldSet, 195
knit_print.ParameterSet, 196
length.TrialDesignSet, 198
MarkdownReporter, 198
names.AnalysisResults, 201
names.FieldSet, 201
names.SimulationResults, 202
names.StageResults, 202
names.TrialDesignSet, 203
NumberOfSubjects, 203
param_accrualIntensity, 205
param_accrualIntensity_counts, 206
param_accrualIntensityType, 205
param_accrualTime, 206
param_accrualTime_counts, 206
param_activeArms, 206
param_adaptations, 207
param_allocationRatioPlanned, 207
param_allocationRatioPlanned_sampleSize,

207
param_alpha, 208
param_alternative, 208
param_alternative_simulation, 208
param_beta, 208
param_bindingFutility, 209
param_calcEventsFunction, 209
param_calcSubjectsFunction, 209
param_conditionalPower, 210
param_conditionalPowerSimulation,

210
param_dataInput, 210
param_design, 211
param_design_with_default, 211
param_digits, 211
param_directionUpper, 211
param_doseLevels, 212
param_dropoutRate1, 212
param_dropoutRate2, 212

param_dropoutTime, 212
param_effectList, 213
param_effectMatrix, 213
param_effectMeasure, 213
param_epsilonValue, 213
param_eventTime, 214
param_fixedExposureTime_counts,

214
param_followUpTime_counts, 214
param_gED50, 214
param_grid, 215
param_groups, 215
param_hazardRatio, 215
param_includeAllParameters, 216
param_informationEpsilon, 216
param_informationRates, 216
param_intersectionTest_Enrichment,

217
param_intersectionTest_MultiArm,

217
param_kappa, 217
param_kMax, 218
param_lambda1, 218
param_lambda1_counts, 218
param_lambda2, 218
param_lambda2_counts, 219
param_lambda_counts, 219
param_legendPosition, 219
param_maxInformation, 220
param_maxNumberOfEventsPerStage,

220
param_maxNumberOfIterations, 220
param_maxNumberOfSubjects, 221
param_maxNumberOfSubjects_survival,

221
param_maxNumberOfSubjectsPerStage,

221
param_median1, 222
param_median2, 222
param_minNumberOfEventsPerStage,

222
param_minNumberOfSubjectsPerStage,

223
param_niceColumnNamesEnabled, 223
param_nMax, 223
param_normalApproximation, 224
param_nPlanned, 224
param_overdispersion_counts, 224
param_palette, 225
param_pi1_rates, 225
param_pi1_survival, 225
param_pi2_rates, 225

344 INDEX

param_pi2_survival, 226
param_piecewiseSurvivalTime, 226
param_plannedCalendarTime, 226
param_plannedEvents, 227
param_plannedSubjects, 227
param_plotPointsEnabled, 227
param_plotSettings, 228
param_populations, 228
param_rValue, 228
param_seed, 228
param_selectArmsFunction, 229
param_selectPopulationsFunction,

229
param_showSource, 229
param_showStatistics, 230
param_sided, 230
param_slope, 230
param_stage, 231
param_stageResults, 231
param_stDev, 231
param_stDevH1, 231
param_stDevSimulation, 232
param_stratifiedAnalysis, 232
param_successCriterion, 232
param_theta, 233
param_theta_counts, 234
param_thetaH0, 233
param_thetaH1, 233
param_three_dots, 234
param_three_dots_plot, 234
param_threshold, 234
param_tolerance, 235
param_typeOfComputation, 235
param_typeOfDesign, 235
param_typeOfSelection, 236
param_typeOfShapeMeans, 236
param_typeOfShapeRates, 237
param_typeOfShapeSurvival, 237
param_userAlphaSpending, 238
param_varianceOption, 238
ParameterSet, 205
PerformanceScore, 238
PiecewiseSurvivalTime, 239
PlotSettings, 262
PowerAndAverageSampleNumberResult,

264
print.Dataset, 264
print.FieldSet, 265
print.InstallationQualificationResult,

265
print.ParameterSet, 266
printCitation, 268

rawDataTwoArmNormal, 269
resetLogLevel, 274
resetOptions, 275
saveOptions, 277
setLogLevel, 278
setupPackageTests, 281
SimulationResults, 281
SimulationResultsCountData, 282
SimulationResultsEnrichmentMeans,

283
SimulationResultsEnrichmentRates,

285
SimulationResultsEnrichmentSurvival,

287
SimulationResultsMeans, 289
SimulationResultsMultiArmMeans,

291
SimulationResultsMultiArmRates,

293
SimulationResultsMultiArmSurvival,

295
SimulationResultsRates, 297
SimulationResultsSurvival, 299
StageResults, 301
StageResultsEnrichmentMeans, 302
StageResultsEnrichmentRates, 303
StageResultsEnrichmentSurvival,

304
StageResultsMeans, 304
StageResultsMultiArmMeans, 305
StageResultsMultiArmRates, 307
StageResultsMultiArmSurvival, 308
StageResultsRates, 309
StageResultsSurvival, 310
summary.AnalysisResults, 311
summary.Dataset, 312
summary.ParameterSet, 313
summary.TrialDesignSet, 315
SummaryFactory, 316
test_plan_section, 318
TrialDesign, 319
TrialDesignCharacteristics, 320
TrialDesignConditionalDunnett, 321
TrialDesignFisher, 322
TrialDesignGroupSequential, 323
TrialDesignInverseNormal, 325
TrialDesignPlan, 326
TrialDesignPlanCountData, 327
TrialDesignPlanMeans, 328
TrialDesignPlanRates, 330
TrialDesignPlanSurvival, 332
TrialDesignSet, 334

INDEX 345

∗ output formats
getOutputFormat, 93
setOutputFormat, 279

∗ power functions
getPowerCounts, 103
getPowerMeans, 106
getPowerRates, 109
getPowerSurvival, 111

∗ sample size functions
getSampleSizeCounts, 121
getSampleSizeMeans, 124
getSampleSizeRates, 126
getSampleSizeSurvival, 129

AccrualTime, 9, 47, 91
AnalysisResults, 10, 22, 52, 201–203, 311
AnalysisResultsConditionalDunnett, 10,

11, 19
AnalysisResultsEnrichment, 12, 22
AnalysisResultsEnrichmentFisher, 10, 12,

12
AnalysisResultsEnrichmentInverseNormal,

10, 12, 13
AnalysisResultsFisher, 10, 15
AnalysisResultsGroupSequential, 10, 16
AnalysisResultsInverseNormal, 10, 17
AnalysisResultsMultiArm, 19, 22
AnalysisResultsMultiArmFisher, 10, 19,

19
AnalysisResultsMultiArmInverseNormal,

10, 19, 20
AnalysisResultsMultiHypotheses, 22
as.data.frame(), 47, 52, 55, 56, 59, 64, 68,

70, 71, 75, 78, 80, 82, 91, 99, 102,
105, 108, 110, 114, 123, 125, 128,
132, 137, 142, 147, 151, 155, 162,
167, 172, 176, 182, 190, 272

as.data.frame.AnalysisResults, 22
as.data.frame.ParameterSet, 23
as.data.frame.PowerAndAverageSampleNumberResult,

23
as.data.frame.StageResults, 24
as.data.frame.TrialDesign, 25
as.data.frame.TrialDesignCharacteristics,

26
as.data.frame.TrialDesignPlan, 27
as.data.frame.TrialDesignSet, 28
as.matrix(), 47, 52, 55, 56, 59, 64, 68, 70,

71, 75, 78, 80, 82, 91, 99, 102, 105,
108, 110, 114, 123, 125, 128, 132,
137, 142, 147, 151, 155, 162, 167,
172, 176, 182, 190, 272

as.matrix.FieldSet, 29

as251Normal, 30
as251StudentT, 31

character, 89, 95, 96, 192, 201–203, 271
checkInstallationQualificationStatus,

32
ClosedCombinationTestResults, 32, 55, 56
ConditionalPowerResults, 33, 59
ConditionalPowerResultsEnrichmentMeans,

34
ConditionalPowerResultsEnrichmentRates,

34
ConditionalPowerResultsMeans, 35
ConditionalPowerResultsRates, 36
ConditionalPowerResultsSurvival, 36

data.frame, 22–29, 37–40, 43, 47, 52, 55, 56,
59, 62, 64, 68, 70, 71, 75, 78, 80, 82,
89–91, 99, 102, 105, 108, 110, 114,
118, 123, 125, 128, 132, 137, 142,
147, 151, 155, 156, 162, 167, 172,
176, 181–184, 190, 193, 269, 272

dataEnrichmentMeans, 37
dataEnrichmentMeansStratified, 37
dataEnrichmentRates, 38
dataEnrichmentRatesStratified, 38
dataEnrichmentSurvival, 38
dataEnrichmentSurvivalStratified, 39
dataMeans, 39
dataMultiArmMeans, 39
dataMultiArmRates, 40
dataMultiArmSurvival, 40
dataRates, 40
Dataset, 41, 64, 242, 264, 265, 272, 274, 312
DatasetEnrichmentSurvival, 41
DatasetEnrichmentSurvival

(DatasetSurvival), 42
DatasetMeans, 41, 41, 63
DatasetRates, 41, 42, 63
DatasetSurvival, 41, 42, 63
dataSurvival, 43
disableStartupMessages, 43

enableStartupMessages, 44
EventProbabilities, 45, 82, 244, 246

fetch (obtain), 204
FieldSet, 23, 30, 46, 201, 265
format, 280

getAccrualTime, 46
getAccrualTime(), 46, 81, 90, 113, 131, 180,

205, 206

346 INDEX

getAnalysisResults, 11–13, 15–17, 19, 20,
32, 49, 55, 57, 59, 60, 85, 120, 121,
191, 192

getAnalysisResults(), 22, 37–40, 43, 64,
92, 201, 240, 251, 252, 278

getAvailablePlotTypes (plotTypes), 262
getClosedCombinationTestResults, 52, 54,

57, 59, 60, 85, 120, 121, 191, 192
getClosedConditionalDunnettTestResults,

52, 55, 56, 59, 60, 85, 120, 121, 191,
192

getClosedConditionalDunnettTestResults(),
69

getConditionalPower, 34–36, 52, 55, 57, 57,
60, 85, 120, 121, 191, 192

getConditionalPower(), 33
getConditionalRejectionProbabilities,

52, 55, 57, 59, 60, 85, 120, 121, 191,
192

getData, 61
getData(), 117, 137, 156, 176, 183
getDataSet (getDataset), 62
getDataset, 41, 42, 62
getDataset(), 49, 83, 119, 189, 210, 272
getDesignCharacteristics, 67, 70, 72, 75,

78, 87, 102, 320
getDesignConditionalDunnett, 68, 69, 72,

75, 78, 87, 102, 321
getDesignConditionalDunnett(), 56
getDesignFisher, 68, 70, 70, 75, 78, 87, 102,

322, 323
getDesignFisher(), 255
getDesignGroupSequential, 68, 70, 72, 72,

78, 87, 102
getDesignGroupSequential(), 255, 263,

323, 324
getDesignInverseNormal, 68, 70, 72, 75, 76,

87, 102
getDesignInverseNormal(), 255, 325, 326
getDesignSet, 79
getDesignSet(), 72, 75, 78, 259, 334
getEventProbabilities, 81
getFinalConfidenceInterval, 52, 55, 57,

59, 60, 83, 85, 120, 121, 191, 192
getFinalPValue, 52, 55, 57, 59, 60, 85, 85,

120, 121, 191, 192
getGroupSequentialProbabilities, 68, 70,

72, 75, 78, 86, 102
getHazardRatioByPi

(utilitiesForSurvivalTrials),
337

getLambdaByMedian

(utilitiesForSurvivalTrials),
337

getLambdaByPi
(utilitiesForSurvivalTrials),
337

getLambdaStepFunction, 88
getLogLevel, 89
getLogLevel(), 275, 278
getLongFormat, 89
getLongFormat(), 193
getMedianByLambda

(utilitiesForSurvivalTrials),
337

getMedianByPi
(utilitiesForSurvivalTrials),
337

getNumberOfSubjects, 90
getNumberOfSubjects(), 47
getObjectRCode (rcmd), 269
getObjectRCode(), 271
getObservedInformationRates, 91
getObservedInformationRates(), 52
getOutputFormat, 93, 280
getOutputFormat(), 280
getParameterCaption, 94
getParameterCaption(), 95, 96
getParameterName, 95
getParameterName(), 95, 96
getParameterType, 96
getPerformanceScore, 97, 238
getPiByLambda

(utilitiesForSurvivalTrials),
337

getPiByMedian
(utilitiesForSurvivalTrials),
337

getPiecewiseExponentialDistribution
(utilitiesForPiecewiseExponentialDistribution),
335

getPiecewiseExponentialQuantile
(utilitiesForPiecewiseExponentialDistribution),
335

getPiecewiseExponentialRandomNumbers
(utilitiesForPiecewiseExponentialDistribution),
335

getPiecewiseSurvivalTime, 98
getPiecewiseSurvivalTime(), 82, 113, 131,

180, 226
getPlotSettings, 101
getPlotSettings(), 228, 241, 243, 245, 247,

248, 250, 253, 256, 258, 260
getPowerAndAverageSampleNumber, 68, 70,

INDEX 347

72, 75, 78, 87, 102
getPowerAndAverageSampleNumber(), 256,

264
getPowerCounts, 103, 108, 111, 115
getPowerCounts(), 257
getPowerMeans, 105, 106, 111, 115
getPowerMeans(), 257
getPowerRates, 105, 108, 109, 115
getPowerRates(), 257
getPowerSurvival, 105, 108, 111, 111
getPowerSurvival(), 257, 337
getRawData, 117
getRawData(), 181, 184
getRepeatedConfidenceIntervals, 52, 55,

57, 59, 60, 85, 118, 121, 191, 192
getRepeatedPValues, 52, 55, 57, 59, 60, 85,

120, 120, 191, 192
getSampleSizeCounts, 121, 126, 128, 132
getSampleSizeCounts(), 257, 327
getSampleSizeMeans, 123, 124, 128, 132
getSampleSizeMeans(), 73, 77, 208, 257,

263, 328
getSampleSizeRates, 123, 126, 126, 132
getSampleSizeRates(), 257, 330
getSampleSizeSurvival, 123, 126, 128, 129
getSampleSizeSurvival(), 82, 90, 257, 332,

337
getSimulationCounts, 134
getSimulationCounts(), 282
getSimulationEnrichmentMeans, 138
getSimulationEnrichmentMeans(), 283
getSimulationEnrichmentRates, 144
getSimulationEnrichmentRates(), 285
getSimulationEnrichmentSurvival, 148
getSimulationEnrichmentSurvival(), 287
getSimulationMeans, 152
getSimulationMeans(), 61, 62, 289
getSimulationMultiArmMeans, 158
getSimulationMultiArmMeans(), 61, 62,

291
getSimulationMultiArmRates, 163
getSimulationMultiArmRates(), 61, 62,

293
getSimulationMultiArmSurvival, 168
getSimulationMultiArmSurvival(), 61, 62,

295
getSimulationRates, 173
getSimulationRates(), 61, 62, 297
getSimulationSurvival, 178
getSimulationSurvival(), 61, 117, 249,

299
getStageResults, 52, 55, 57, 59, 60, 85, 120,

121, 189, 192
getStageResults(), 55, 56, 58, 60, 85, 120,

192, 231, 251
getSystemIdentifier, 191
getTestActions, 52, 55, 57, 59, 60, 85, 120,

121, 191, 192
getWideFormat, 193
getWideFormat(), 90

InstallationQualificationResult, 193,
317

InstallationQualificationResult-class
(InstallationQualificationResult),
193

integer, 198

kable, 195
kable (kableParameterSet), 194
kableParameterSet, 194
knit_print, 195–197
knit_print.FieldSet, 195
knit_print.ParameterSet, 196
knit_print.SummaryFactory, 197

length, 80
length.TrialDesignSet, 198
list, 84, 85, 274

make.names, 22–30, 223
MarkdownReporter, 198
matrix, 30, 47, 52, 55, 56, 59, 60, 64, 68, 70,

71, 75, 78, 80, 82, 91, 99, 102, 105,
108, 110, 114, 120, 121, 123, 125,
128, 132, 137, 142, 147, 151, 155,
162, 167, 172, 176, 182, 190, 272

methods, 47, 52, 55, 57, 59, 68, 70, 72, 75, 78,
80, 82, 91, 100, 102, 105, 108, 111,
115, 123, 126, 128, 132, 138, 142,
147, 151, 156, 162, 167, 172, 177,
184, 191, 312–314, 316

mvnprd, 31, 199
mvstud, 31, 200

names, 52, 79, 98, 190
names(), 47, 55, 56, 59, 64, 68, 69, 71, 75, 78,

82, 91, 99, 102, 105, 108, 110, 114,
123, 125, 128, 132, 137, 142, 147,
151, 155, 161, 167, 172, 176, 182,
272, 311, 312, 314, 315

names.AnalysisResults, 201
names.FieldSet, 201
names.SimulationResults, 202
names.StageResults, 202

348 INDEX

names.TrialDesignSet, 203
nMax, 256
NumberOfSubjects, 91, 203, 244–246
numeric, 60, 121, 192, 336, 337

obtain, 204

param_accrualIntensity, 205
param_accrualIntensity_counts, 206
param_accrualIntensityType, 205
param_accrualTime, 206
param_accrualTime_counts, 206
param_activeArms, 206
param_adaptations, 207
param_allocationRatioPlanned, 207
param_allocationRatioPlanned_sampleSize,

207
param_alpha, 208
param_alternative, 208
param_alternative_simulation, 208
param_beta, 208
param_bindingFutility, 209
param_calcEventsFunction, 209
param_calcSubjectsFunction, 209
param_conditionalPower, 210
param_conditionalPowerSimulation, 210
param_dataInput, 210
param_design, 211
param_design_with_default, 211
param_digits, 211
param_directionUpper, 211
param_doseLevels, 212
param_dropoutRate1, 212
param_dropoutRate2, 212
param_dropoutTime, 212
param_effectList, 213
param_effectMatrix, 213
param_effectMeasure, 213
param_epsilonValue, 213
param_eventTime, 214
param_fixedExposureTime_counts, 214
param_followUpTime_counts, 214
param_gED50, 214
param_grid, 215
param_groups, 215
param_hazardRatio, 215
param_includeAllParameters, 216
param_informationEpsilon, 216
param_informationRates, 216
param_intersectionTest_Enrichment, 217
param_intersectionTest_MultiArm, 217
param_kappa, 217
param_kMax, 218

param_lambda1, 218
param_lambda1_counts, 218
param_lambda2, 218
param_lambda2_counts, 219
param_lambda_counts, 219
param_legendPosition, 219
param_maxInformation, 220
param_maxNumberOfEventsPerStage, 220
param_maxNumberOfIterations, 220
param_maxNumberOfSubjects, 221
param_maxNumberOfSubjects_survival,

221
param_maxNumberOfSubjectsPerStage, 221
param_median1, 222
param_median2, 222
param_minNumberOfEventsPerStage, 222
param_minNumberOfSubjectsPerStage, 223
param_niceColumnNamesEnabled, 223
param_nMax, 223
param_normalApproximation, 224
param_nPlanned, 224
param_overdispersion_counts, 224
param_palette, 225
param_pi1_rates, 225
param_pi1_survival, 225
param_pi2_rates, 225
param_pi2_survival, 226
param_piecewiseSurvivalTime, 226
param_plannedCalendarTime, 226
param_plannedEvents, 227
param_plannedSubjects, 227
param_plotPointsEnabled, 227
param_plotSettings, 228
param_populations, 228
param_rValue, 228
param_seed, 228
param_selectArmsFunction, 229
param_selectPopulationsFunction, 229
param_showSource, 229
param_showStatistics, 230
param_sided, 230
param_slope, 230
param_stage, 231
param_stageResults, 231
param_stDev, 231
param_stDevH1, 231
param_stDevSimulation, 232
param_stratifiedAnalysis, 232
param_successCriterion, 232
param_theta, 233
param_theta_counts, 234
param_thetaH0, 233

INDEX 349

param_thetaH1, 233
param_three_dots, 234
param_three_dots_plot, 234
param_threshold, 234
param_tolerance, 235
param_typeOfComputation, 235
param_typeOfDesign, 235
param_typeOfSelection, 236
param_typeOfShapeMeans, 236
param_typeOfShapeRates, 237
param_typeOfShapeSurvival, 237
param_userAlphaSpending, 238
param_varianceOption, 238
ParameterSet, 195, 204, 205, 247, 248, 266,

313–315
PerformanceScore, 238
PiecewiseSurvivalTime, 99, 239
plot, 88
plot arguments, 240, 252
plot(), 47, 52, 55, 56, 59, 64, 68, 70, 71, 75,

78, 80, 82, 91, 99, 102, 105, 108,
110, 114, 123, 125, 128, 132, 137,
142, 147, 151, 155, 162, 167, 172,
176, 182, 190, 256, 272

plot.AnalysisResults, 239
plot.AnalysisResults(), 59
plot.Dataset, 242
plot.EventProbabilities, 244
plot.NumberOfSubjects, 245
plot.ParameterSet, 247
plot.SimulationResults, 249
plot.StageResults, 251
plot.StageResults(), 59
plot.SummaryFactory, 253
plot.TrialDesign, 254
plot.TrialDesignCharacteristics

(plot.TrialDesign), 254
plot.TrialDesignPlan, 257
plot.TrialDesignSet, 259
plot.TrialDesignSummaries, 261
PlotSettings, 262
plotTypes, 262
PowerAndAverageSampleNumberResult, 23,

24, 102, 264
ppwexp

(utilitiesForPiecewiseExponentialDistribution),
335

print, 215, 241, 250, 256, 258, 260, 262
print(), 47, 52, 55, 56, 59, 64, 68, 70, 71, 75,

78, 80, 82, 91, 99, 102, 105, 108,
110, 114, 123, 125, 128, 132, 137,
142, 147, 151, 155, 161, 167, 172,

176, 182, 190, 272, 311, 312, 314,
315

print.Dataset, 264
print.FieldSet, 265
print.InstallationQualificationResult,

265
print.ParameterSet, 266
print.SummaryFactory, 267
print.TrialDesignCharacteristics, 267
print.TrialDesignSummaries, 268
printCitation, 268

qpwexp
(utilitiesForPiecewiseExponentialDistribution),
335

range, 137, 155, 176, 183
rawDataTwoArmNormal, 269
rcmd, 269
rcmd(), 271
read.table, 271–273
readDataset, 271
readDataset(), 274, 339, 340
readDatasets, 273
readDatasets(), 272, 339, 340
resetLogLevel, 274
resetLogLevel(), 89, 278
resetOptions, 275
reshape, 272

350 INDEX

SimulationResultsMultiArmMeans, 282,
289, 291

SimulationResultsMultiArmRates, 282,
293, 297

SimulationResultsMultiArmSurvival, 282,
295, 299

SimulationResultsRates, 281, 297, 297
SimulationResultsSurvival, 281, 299, 299
StageResults, 25, 190, 202, 301
StageResultsEnrichmentMeans, 301, 302
StageResultsEnrichmentRates, 301, 303
StageResultsEnrichmentSurvival, 301,

304
StageResultsMeans, 301, 304
StageResultsMultiArmMeans, 301, 305
StageResultsMultiArmRates, 301, 307
StageResultsMultiArmSurvival, 301, 308
StageResultsRates, 301, 309
StageResultsSurvival, 301, 310
summary(), 47, 52, 55, 56, 59, 64, 68, 70, 71,

75, 78, 80, 82, 91, 99, 102, 105, 108,
110, 114, 123, 125, 128, 132, 137,
142, 147, 151, 155, 162, 167, 172,
176, 182, 190, 272

summary.AnalysisResults, 311
summary.Dataset, 312
summary.ParameterSet, 313
summary.TrialDesignSet, 315
SummaryFactory, 311, 312, 314, 315, 316

test_plan_section, 318
testInstalledBasic, 317
testPackage, 194, 316
thetaH0, 240, 252
TrialDesign, 26, 69, 71, 75, 78, 319
TrialDesignCharacteristics, 27, 68, 320
TrialDesignConditionalDunnett, 319, 321
TrialDesignFisher, 319, 322
TrialDesignGroupSequential, 319, 323
TrialDesignInverseNormal, 319, 325
TrialDesignPlan, 27, 28, 105, 108, 110, 114,

123, 125, 128, 131, 326
TrialDesignPlanCountData, 327
TrialDesignPlanMeans, 326, 328
TrialDesignPlanRates, 326, 330
TrialDesignPlanSurvival, 326, 332
TrialDesignSet, 29, 79, 198, 203, 334

utilitiesForPiecewiseExponentialDistribution,
335

utilitiesForSurvivalTrials, 337

write.table, 338–340

writeDataset, 338
writeDataset(), 272, 274, 339, 340
writeDatasets, 339
writeDatasets(), 272, 274, 339

	AccrualTime
	AnalysisResults
	AnalysisResultsConditionalDunnett
	AnalysisResultsEnrichment
	AnalysisResultsEnrichmentFisher
	AnalysisResultsEnrichmentInverseNormal
	AnalysisResultsFisher
	AnalysisResultsGroupSequential
	AnalysisResultsInverseNormal
	AnalysisResultsMultiArm
	AnalysisResultsMultiArmFisher
	AnalysisResultsMultiArmInverseNormal
	AnalysisResultsMultiHypotheses
	as.data.frame.AnalysisResults
	as.data.frame.ParameterSet
	as.data.frame.PowerAndAverageSampleNumberResult
	as.data.frame.StageResults
	as.data.frame.TrialDesign
	as.data.frame.TrialDesignCharacteristics
	as.data.frame.TrialDesignPlan
	as.data.frame.TrialDesignSet
	as.matrix.FieldSet
	as251Normal
	as251StudentT
	checkInstallationQualificationStatus
	ClosedCombinationTestResults
	ConditionalPowerResults
	ConditionalPowerResultsEnrichmentMeans
	ConditionalPowerResultsEnrichmentRates
	ConditionalPowerResultsMeans
	ConditionalPowerResultsRates
	ConditionalPowerResultsSurvival
	dataEnrichmentMeans
	dataEnrichmentMeansStratified
	dataEnrichmentRates
	dataEnrichmentRatesStratified
	dataEnrichmentSurvival
	dataEnrichmentSurvivalStratified
	dataMeans
	dataMultiArmMeans
	dataMultiArmRates
	dataMultiArmSurvival
	dataRates
	Dataset
	DatasetMeans
	DatasetRates
	DatasetSurvival
	dataSurvival
	disableStartupMessages
	enableStartupMessages
	EventProbabilities
	FieldSet
	getAccrualTime
	getAnalysisResults
	getClosedCombinationTestResults
	getClosedConditionalDunnettTestResults
	getConditionalPower
	getConditionalRejectionProbabilities
	getData
	getDataset
	getDesignCharacteristics
	getDesignConditionalDunnett
	getDesignFisher
	getDesignGroupSequential
	getDesignInverseNormal
	getDesignSet
	getEventProbabilities
	getFinalConfidenceInterval
	getFinalPValue
	getGroupSequentialProbabilities
	getLambdaStepFunction
	getLogLevel
	getLongFormat
	getNumberOfSubjects
	getObservedInformationRates
	getOutputFormat
	getParameterCaption
	getParameterName
	getParameterType
	getPerformanceScore
	getPiecewiseSurvivalTime
	getPlotSettings
	getPowerAndAverageSampleNumber
	getPowerCounts
	getPowerMeans
	getPowerRates
	getPowerSurvival
	getRawData
	getRepeatedConfidenceIntervals
	getRepeatedPValues
	getSampleSizeCounts
	getSampleSizeMeans
	getSampleSizeRates
	getSampleSizeSurvival
	getSimulationCounts
	getSimulationEnrichmentMeans
	getSimulationEnrichmentRates
	getSimulationEnrichmentSurvival
	getSimulationMeans
	getSimulationMultiArmMeans
	getSimulationMultiArmRates
	getSimulationMultiArmSurvival
	getSimulationRates
	getSimulationSurvival
	getStageResults
	getSystemIdentifier
	getTestActions
	getWideFormat
	InstallationQualificationResult
	kableParameterSet
	knit_print.FieldSet
	knit_print.ParameterSet
	knit_print.SummaryFactory
	length.TrialDesignSet
	MarkdownReporter
	mvnprd
	mvstud
	names.AnalysisResults
	names.FieldSet
	names.SimulationResults
	names.StageResults
	names.TrialDesignSet
	NumberOfSubjects
	obtain
	ParameterSet
	param_accrualIntensity
	param_accrualIntensityType
	param_accrualIntensity_counts
	param_accrualTime
	param_accrualTime_counts
	param_activeArms
	param_adaptations
	param_allocationRatioPlanned
	param_allocationRatioPlanned_sampleSize
	param_alpha
	param_alternative
	param_alternative_simulation
	param_beta
	param_bindingFutility
	param_calcEventsFunction
	param_calcSubjectsFunction
	param_conditionalPower
	param_conditionalPowerSimulation
	param_dataInput
	param_design
	param_design_with_default
	param_digits
	param_directionUpper
	param_doseLevels
	param_dropoutRate1
	param_dropoutRate2
	param_dropoutTime
	param_effectList
	param_effectMatrix
	param_effectMeasure
	param_epsilonValue
	param_eventTime
	param_fixedExposureTime_counts
	param_followUpTime_counts
	param_gED50
	param_grid
	param_groups
	param_hazardRatio
	param_includeAllParameters
	param_informationEpsilon
	param_informationRates
	param_intersectionTest_Enrichment
	param_intersectionTest_MultiArm
	param_kappa
	param_kMax
	param_lambda1
	param_lambda1_counts
	param_lambda2
	param_lambda2_counts
	param_lambda_counts
	param_legendPosition
	param_maxInformation
	param_maxNumberOfEventsPerStage
	param_maxNumberOfIterations
	param_maxNumberOfSubjects
	param_maxNumberOfSubjectsPerStage
	param_maxNumberOfSubjects_survival
	param_median1
	param_median2
	param_minNumberOfEventsPerStage
	param_minNumberOfSubjectsPerStage
	param_niceColumnNamesEnabled
	param_nMax
	param_normalApproximation
	param_nPlanned
	param_overdispersion_counts
	param_palette
	param_pi1_rates
	param_pi1_survival
	param_pi2_rates
	param_pi2_survival
	param_piecewiseSurvivalTime
	param_plannedCalendarTime
	param_plannedEvents
	param_plannedSubjects
	param_plotPointsEnabled
	param_plotSettings
	param_populations
	param_rValue
	param_seed
	param_selectArmsFunction
	param_selectPopulationsFunction
	param_showSource
	param_showStatistics
	param_sided
	param_slope
	param_stage
	param_stageResults
	param_stDev
	param_stDevH1
	param_stDevSimulation
	param_stratifiedAnalysis
	param_successCriterion
	param_theta
	param_thetaH0
	param_thetaH1
	param_theta_counts
	param_three_dots
	param_three_dots_plot
	param_threshold
	param_tolerance
	param_typeOfComputation
	param_typeOfDesign
	param_typeOfSelection
	param_typeOfShapeMeans
	param_typeOfShapeRates
	param_typeOfShapeSurvival
	param_userAlphaSpending
	param_varianceOption
	PerformanceScore
	PiecewiseSurvivalTime
	plot.AnalysisResults
	plot.Dataset
	plot.EventProbabilities
	plot.NumberOfSubjects
	plot.ParameterSet
	plot.SimulationResults
	plot.StageResults
	plot.SummaryFactory
	plot.TrialDesign
	plot.TrialDesignPlan
	plot.TrialDesignSet
	plot.TrialDesignSummaries
	PlotSettings
	plotTypes
	PowerAndAverageSampleNumberResult
	print.Dataset
	print.FieldSet
	print.InstallationQualificationResult
	print.ParameterSet
	print.SummaryFactory
	print.TrialDesignCharacteristics
	print.TrialDesignSummaries
	printCitation
	rawDataTwoArmNormal
	rcmd
	readDataset
	readDatasets
	resetLogLevel
	resetOptions
	rpact
	saveOptions
	setLogLevel
	setOutputFormat
	setupPackageTests
	SimulationResults
	SimulationResultsCountData
	SimulationResultsEnrichmentMeans
	SimulationResultsEnrichmentRates
	SimulationResultsEnrichmentSurvival
	SimulationResultsMeans
	SimulationResultsMultiArmMeans
	SimulationResultsMultiArmRates
	SimulationResultsMultiArmSurvival
	SimulationResultsRates
	SimulationResultsSurvival
	StageResults
	StageResultsEnrichmentMeans
	StageResultsEnrichmentRates
	StageResultsEnrichmentSurvival
	StageResultsMeans
	StageResultsMultiArmMeans
	StageResultsMultiArmRates
	StageResultsMultiArmSurvival
	StageResultsRates
	StageResultsSurvival
	summary.AnalysisResults
	summary.Dataset
	summary.ParameterSet
	summary.TrialDesignSet
	SummaryFactory
	testPackage
	test_plan_section
	TrialDesign
	TrialDesignCharacteristics
	TrialDesignConditionalDunnett
	TrialDesignFisher
	TrialDesignGroupSequential
	TrialDesignInverseNormal
	TrialDesignPlan
	TrialDesignPlanCountData
	TrialDesignPlanMeans
	TrialDesignPlanRates
	TrialDesignPlanSurvival
	TrialDesignSet
	utilitiesForPiecewiseExponentialDistribution
	utilitiesForSurvivalTrials
	writeDataset
	writeDatasets
	Index

