Package ‘rpact’

July 24, 2025

Title Confirmatory Adaptive Clinical Trial Design and Analysis
Version 4.2.1
Date 2025-07-23

Description Design and analysis of confirmatory adaptive clinical trials with continuous, bi-
nary, and survival endpoints according to the methods described in the monograph by Wass-
mer and Brannath (2016) <doi:10.1007/978-3-319-32562-0>. This includes classical group se-
quential as well as multi-stage adaptive hypotheses tests that are based on the combination test-
ing principle.

License LGPL-3

Encoding UTF-8

LazyData true

URL https://www.rpact.org,
https://www.rpact.com,
https://github.com/rpact-com/rpact,
https://rpact-com.github.io/rpact/,
https://rpact.shinyapps.io/connect

BugReports https://github.com/rpact-com/rpact/issues
Language en-US
Depends R (>=3.6.0)

Imports methods,
stats,
utils,
graphics,
tools,
rlang,
R6 (>=2.5.1),
knitr (>=1.19),
Repp (>=1.0.3)

LinkingTo Rcpp

Suggests ggplot2 (>=3.5.0),
testthat (>= 3.0.0),
rmarkdown (>= 1.10),
rappdirs (>=0.3.3)

VignetteBuilder knitr, rmarkdown

https://doi.org/10.1007/978-3-319-32562-0
https://www.rpact.org
https://www.rpact.com
https://github.com/rpact-com/rpact
https://rpact-com.github.io/rpact/
https://rpact.shinyapps.io/connect
https://github.com/rpact-com/rpact/issues

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)
Config/testthat/edition 3
Config/testthat/parallel true
Config/testthat/start-first *analysis*

Collate 'RcppExports.R'
'f_logger.R'
'class_dictionary.R'
'f core_constants.R'
'f core_utilities.R'
'f core_assertions.R'
'f_analysis_utilities.R'
'f_parameter_set_utilities.R'
'class_core_parameter_set.R'
'class_core_plot_settings.R'
'f_core_plot.R’
'class_design.R'
'f_object_r_code.R'
'f_analysis_base.R'
'class_analysis_dataset.R’
'class_analysis_stage_results.R'
'class_analysis_results.R'
'f_design_general_utilities.R'
'class_time.R'
'class_design_set.R'
'class_design_plan.R'
'class_design_power_and_asn.R'
'class_event_probabilities.R'
'f_simulation_base_counts.R'
'f simulation_utilities.R'
'f simulation_base_survival.R'
'class_simulation_results.R'
'class_performance_score.R'
'class_summary.R'
'data.R’
'f_analysis_base_means.R'
'f_analysis_base_rates.R’
'f_analysis_base_survival.R'
'f_analysis_boundary_recalculation.R’
'f_analysis_enrichment.R'
'f_analysis_enrichment_means.R'
'f_analysis_enrichment_rates.R'
'f_analysis_enrichment_survival.R'
'f_analysis_multiarm.R’
'f_analysis_multiarm_means.R'
'f_analysis_multiarm_rates.R'
'f_analysis_multiarm_survival.R'
'f_as251.R’
'f_core_output_formats.R'
'f_design_fisher_combination_test.R'
'f_design_group_sequential.R'

Contents 3

'f_design_plan_counts.R'
'f_design_plan_means.R'
'f_design_plan_plot.R'
'f_design_plan_rates.R’
'f_design_plan_survival.R'
'f_design_plan_utilities.R'
'f_quality_assurance.R'
'f_simulation_base_means.R'

'f simulation_base_rates.R'
'f_simulation_calc_subjects_function.R'
'f simulation_enrichment.R'
'f_simulation_enrichment_means.R'
'f simulation_enrichment_rates.R'

'f simulation_enrichment_survival.R'
'f simulation_multiarm.R’

'f simulation_multiarm_means.R'

'f simulation_multiarm_rates.R'

'f simulation_multiarm_survival.R'
'f_simulation_performance_score.R'
'f_simulation_plot.R'
'parameter_descriptions.R’

'pkgname.R’
Contents
AccrualTime 9
AnalysisResults L 10
AnalysisResultsConditionalDunnett 11
AnalysisResultsEnrichment o L o 12
AnalysisResultsEnrichmentFisher L. 12
AnalysisResultsEnrichmentInverseNormal 13
AnalysisResultsFisher L 15
AnalysisResultsGroupSequential oL oo 16
AnalysisResultsInverseNormal o 17
AnalysisResultsMultiArm L 19
AnalysisResultsMultiArmFisher o000 19
AnalysisResultsMultiArmInverseNormal 20
AnalysisResultsMultiHypotheses 22
as.data.frame.AnalysisResults L L o 22
as.data.frame.ParameterSet L. L 23
as.data.frame.PowerAndAverageSampleNumberResult 23
as.data.frame.StageResults 24
as.data.frame. TrialDesign 25
as.data.frame.TrialDesignCharacteristics 26
as.data.frame.TrialDesignPlan o 27
as.data.frame.TrialDesignSet 28
as.matrix.FieldSet 29
as251Normal Lo 30
as251StudentT L. 31
checklInstallationQualificationStatus, 32
ClosedCombinationTestResults 32

ConditionalPowerResults 33

Contents

ConditionalPowerResultsEnrichmentMeans 34
ConditionalPowerResultsEnrichmentRates 34
ConditionalPowerResultsMeans 35
ConditionalPowerResultsRates L oo 36
ConditionalPowerResultsSurvival Lo 36
dataEnrichmentMeans e 37
dataEnrichmentMeansStratified Lo oL 37
dataEnrichmentRates 38
dataEnrichmentRatesStratified oo 38
dataEnrichmentSurvivalo 38
dataEnrichmentSurvivalStratified oL 39
dataMeans e e 39
dataMultiArmMeans Lo e e 39
dataMultiArmRates e e 40
dataMultiArmSurvival 40
dataRates e 40
Dataset e e 41
DatasetMeansot e e e e e 41
DatasetRates e e e 42
DatasetSurvival e e e 42
dataSurvival e 43
disableStartupMessagesl 43
enableStartupMessageso e e e e 44
EventProbabilities 45
FieldSet e 46
getAccrualTime L L 46
getAnalysisResults L 49
getClosedCombinationTestResults, . 54
getClosedConditionalDunnettTestResults 56
getConditionalPower L 57
getConditionalRejectionProbabilities oL 60
getData e e e e 61
getDataset L 62
getDesignCharacteristics e 67
getDesignConditionalDunnett 69
getDesignFisher 70
getDesignGroupSequential oL 72
getDesignlnverseNormal L L 76
getDesignSet 79
getEventProbabilities L 81
getFinalConfidencelnterval o 83
getFinalPValue 85
getGroupSequentialProbabilities L 86
getLambdaStepFunction 0oL 88
getLoglevel e 89
getLongFormat L e 89
getNumberOfSubjects oL 90
getObservedInformationRates L o 91
getOutputFormat L 93
getParameterCaptiono 94
getParameterName e 95

getParameterType L 96

Contents

5
getPerformanceScore L. 97
getPiecewiseSurvivalTime 98
getPlotSettings L 101
getPowerAndAverageSampleNumber L. 102
getPowerCounts L L. e e 103
getPowerMeans oL L e 106
getPowerRates L. 109
getPowerSurvivalo Lo 111
getRawData e 117
getRepeatedConfidencelntervals 118
getRepeatedPValues L 120
getSampleSizeCounts Lo e 121
getSampleSizeMeans L. L e e e e 124
getSampleSizeRates 126
getSampleSizeSurvival oL 129
getSimulationCounts L. e 134
getSimulationEnrichmentMeans Lo 138
getSimulationEnrichmentRates 144
getSimulationEnrichmentSurvival 0000000 148
getSimulationMeans L L 152
getSimulationMultiArmMeanso 158
getSimulationMultiArmRates 0oL 163
getSimulationMultiArmSurvival oo 168
getSimulationRates L 173
getSimulationSurvival 178
getStageResults oL 189
getSystemldentifier 191
getTestACtions 192
getWideFormat 193
InstallationQualificationResult 193
kableParameterSet 194
knit_print.FieldSet 195
knit_print.ParameterSet 196
knit_print.SummaryFactory 197
length.TrialDesignSet e 198
MarkdownReporter 198
mvnprd ... e e e 199
mvstud e 200
names.AnalysisResults 201
names.FieldSet 201
names.SimulationResults oo 0oL 202
names.StageResults 202
names.TrialDesignSet e 203
NumberOfSubjects e 203
obtain L. 204
ParameterSet L 205
param_accruallntensity Lo e 205
param_accruallntensityType 205
param_accruallntensity_counts L. e e 206
param_accrualTime 206
param_accrualTime_counts 206

param_activeArms e e e e e 206

Contents

param_adaptationso e e 207
param_allocationRatioPlanned oL 207
param_allocationRatioPlanned_sampleSize 207
param_alpha e e e e e e 208
param_alternative L L e e e e e 208
param_alternative_simulationo L 208
param_beta L e e e e e 208
param_bindingFutility oo 209
param_calcEventsFunction o 209
param_calcSubjectsFunction Lo 209
param_conditionalPower oL oL 210
param_conditionalPowerSimulationo oL 210
param_datalnput e e 210
param_design e e e 211
param_design_with_default. oL o 211
param_digits L. e e e 211
param_directionUpper 211
param_doselevels e 212
param_dropoutRatel 212
param_dropoutRate2 L 212
param_dropoutTime e 212
param_effectlist L 213
param_effectMatrix Lo 213
param_effectMeasure L. L e e 213
param_epsilonValue 213
param_eventTime oL 214
param_fixedExposureTime_countso 214
param_followUpTime_counts 214
param_gEDSO0 e e e 214
param_grid e 215
PATAM_ZIOUPS . .« « o e e e et e e e e e e e e e e e e e e 215
param_hazardRatio 215
param_includeAllParameterso 216
param_informationEpsilon oL 216
param_informationRates L. 216
param_intersectionTest_Enrichment 217
param_intersectionTest_MultiArm oL oL 217
param_kappa e e e e e 217
param_kMax e 218
param_lambdal e 218
param_lambdal_counts oL L 218
param_lambda2 218
param_lambda2_counts L. e e 219
param_lambda_counts Lo L e e 219
param_legendPosition 219
param_maxInformation L. L e 220
param_maxNumberOfEventsPerStage 220
param_maxNumberOflterations 220
param_maxNumberOfSubjects 221
param_maxNumberOfSubjectsPerStage 221
param_maxNumberOfSubjects_survival L. 221

param_medianl e 222

Contents

7
param_median2 e e 222
param_minNumberOfEventsPerStage 222
param_minNumberOfSubjectsPerStage 223
param_niceColumnNamesEnabled 223
param_nMax e e e e e e 223
param_normalApproximationo 224
param_nPlanned 224
param_overdispersion_COUNLS v v v v v bt e e e e e e e e e 224
param_palette 225
param_pil_rates e e e e e e 225
param_pil_survivalo L L e 225
PAram_pPi2_rateso e e e e e e e e e e e e e e e e 225
param_pi2_survival L e e e 226
param_piecewiseSurvivalTime 226
param_plannedCalendarTime 226
param_plannedEvents 227
param_plannedSubjects Lo 227
param_plotPointsEnabled L 227
param_plotSettings L 228
param_populations Lo e 228
param_rValue e e e e e 228
param_seed e e e e e 228
param_selectArmsFunction oL 229
param_selectPopulationsFunction L Lo 229
param_showSourcel e 229
param_showStatistics 230
param_sided L. e e 230
param_slope 230
PATAM_StAZe i e e e e e e e e e e e e e e e e e e 231
param_stageResults oL oo 231
param_stDev e 231
param_stDevHI1 231
param_stDevSimulation oL L 232
param_stratifiedAnalysiso 232
param_successCriterion e e 232
param_theta L e 233
param_thetaHO 233
param_thetaH1 e 233
param_theta_counts L. Ll e e 234
param_three_dots L. e e e 234
param_three_dots_plot L. e e 234
param_threshold 234
param_tolerance e e e e e e e e e e 235
param_typeOfComputation 235
param_typeOfDesign 235
param_typeOfSelection 236
param_typeOfShapeMeans L 236
param_typeOfShapeRates 237
param_typeOfShapeSurvival 237
param_userAlphaSpending 238
param_varianceOption oL oL e e e 238

PerformanceScore 238

Contents

PiecewiseSurvivalTime 239
plot.AnalysisResults 239
plot.Dataset e e 242
plot.EventProbabilities 244
plot. NumberOfSubjects 245
plot.ParameterSet 247
plot.SimulationResults 249
plot.StageResults L 251
plot.SummaryFactory L 253
plot.TrialDesign e e 254
plot.TrialDesignPlan 257
plot.TrialDesignSet L 259
plot.TrialDesignSummaries 261
PlotSettings e 262
plotTypes 262
PowerAndAverageSampleNumberResult L. 264
print.Dataset 264
print.FieldSet e 265
print.InstallationQualificationResult o000 265
print.ParameterSet 266
print.SummaryFactory L 267
print.TrialDesignCharacteristics 267
print.TrialDesignSummaries L o 268
printCitation e e e e e 268
rawDataTwoArmNormal L 269
remd ... e e 269
readDataset L. 271
readDatasets L 273
resetLoglevel L e 274
resetOptions L. e 275
TPACE . o o v v e e e e e e e e e e e 276
SAVEOPLIONS o e e e e e e e e e e e 277
setLoglevel 278
setOutputFormat L. e 279
setupPackageTests e 281
SimulationResults 281
SimulationResultsCountData 282
SimulationResultsEnrichmentMeans 283
SimulationResultsEnrichmentRates 285
SimulationResultsEnrichmentSurvival 0oL, 287
SimulationResultsMeans L o 289
SimulationResultsMultiArmMeans 291
SimulationResultsMultiArmRates L oo 293
SimulationResultsMultiArmSurvival L oo 295
SimulationResultsRates 297
SimulationResultsSurvival oL 299
StageResults 301
StageResultsEnrichmentMeans oo 302
StageResultsEnrichmentRates 303
StageResultsEnrichmentSurvival Lo 304
StageResultsMeans 304

StageResultsMultiArmMeans L e 305

AccrualTime 9

StageResultsMultiArmRates 307
StageResultsMultiArmSurvival o 308
StageResultsRates L 309
StageResultsSurvival L 310
summary.AnalysisResults L 311
summary.Dataset 312
summary.ParameterSet 313
summary.TrialDesignSet L oo 315
SummaryFactory L e e e 316
testPackage L e 316
test_plan_section L. e e e 318
TrialDesign L 319
TrialDesignCharacteristics 320
TrialDesignConditionalDunnett 321
TrialDesignFisher 322
TrialDesignGroupSequential 323
TrialDesignlnverseNormal L 325
TrialDesignPlano 326
TrialDesignPlanCountData e 327
TrialDesignPlanMeans oo 328
TrialDesignPlanRates L 330
TrialDesignPlanSurvival oo 0oL 332
TrialDesignSet e e 334
utilitiesForPiecewiseExponentialDistribution 335
utilitiesForSurvivalTrials L 337
writeDataset 338
writeDatasets L e e 339
Index 342
AccrualTime Accrual Time
Description

Class for the definition of accrual time and accrual intensity.

Details

AccrualTime is a class for the definition of accrual time and accrual intensity.

Fields

endOfAccrualIsUserDefined If TRUE, the end of accrual has to be defined by the user (i.e., the

length of accrualTime is equal to the length of accrualIntensity -1). Is a logical vector of
length 1.

followUpTimeMustBeUserDefined Specifies whether follow up time needs to be defined or not.

Is a logical vector of length 1.

maxNumberOfSubjectsIsUserDefined If TRUE, the maximum number of subjects has been spec-

ified by the user, if FALSE, it was calculated.

10 AnalysisResults
maxNumberOfSubjectsCanBeCalculatedDirectly If TRUE, the maximum number of subjects can
directly be calculated. Is a logical vector of length 1.

absoluteAccruallntensityEnabled If TRUE, absolute accrual intensity is enabled. Is a logical
vector of length 1.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.
accruallntensity The absolute accrual intensities. Is a numeric vector of length kMax.
accruallntensityRelative The relative accrual intensities.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

remainingTime In survival designs, the remaining time for observation. Is a numeric vector of

length 1.
piecewiseAccrualEnabled Indicates whether piecewise accrual is selected. Is a logical vector of
length 1.
AnalysisResults Basic Class for Analysis Results
Description

A basic class for analysis results.

Details

AnalysisResults is the basic class for

e AnalysisResultsFisher,

* AnalysisResultsGroupSequential,

* AnalysisResultsInverseNormal,

* AnalysisResultsMultiArmFisher,

* AnalysisResultsMultiArmInverseNormal,
* AnalysisResultsConditionalDunnett,

* AnalysisResultsEnrichmentFisher,

* AnalysisResultsEnrichmentInverseNormal.

AnalysisResultsConditional Dunnett 11

AnalysisResultsConditionalDunnett
Analysis Results Multi-Arm Conditional Dunnett

Description

Class for multi-arm analysis results based on a conditional Dunnett test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a conditional Dunnett test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH@ The difference or assumed effect under HO. Is a numeric vector of length 1.

pil The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0O and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled”, "pairwisePooled”, "notPooled”. Available options for enrichment
designs: "pooled”, "pooledFromFull”, "notPooled”.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

12 AnalysisResultsEnrichmentFisher

repeatedConfidencelIntervallLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidencelIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

AnalysisResultsEnrichment
Basic Class for Analysis Results Enrichment

Description

A basic class for enrichment analysis results.

Details

AnalysisResultsEnrichment is the basic class for

* AnalysisResultsEnrichmentFisher and

* AnalysisResultsEnrichmentInverseNormal.

AnalysisResultsEnrichmentFisher
Analysis Results Enrichment Fisher

Description

Class for enrichment analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a Fisher combination test design.

Fields
normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaHo The difference or assumed effect under HO. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

AnalysisResultsEnrichmentInverseNormal 13

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled”, "pairwisePooled”, "notPooled”. Available options for enrichment
designs: "pooled”, "pooledFromFull”, "notPooled”.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

repeatedConfidencelntervallLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidencelIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControls The assumed rates in the control group for enrichment designs, i.e., designs with
multiple subsets.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

AnalysisResultsEnrichmentInverseNormal
Analysis Results Enrichment Inverse Normal

Description

Class for enrichment analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the enrichment analysis results of an inverse normal design.

14 AnalysisResultsEnrichmentInverseNormal

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH@ The difference or assumed effect under HO. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled”, "pairwisePooled”, "notPooled”. Available options for enrichment
designs: "pooled”, "pooledFromFull”, "notPooled”.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidenceIntervallowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControls The assumed rates in the control group for enrichment designs, i.e., designs with
multiple subsets.

stratifiedAnalysis For enrichment designs, typically a stratified analysis should be chosen.
When testing means and rates, a non-stratified analysis can be performed on overall data. For
survival data, only a stratified analysis is possible. Is a logical vector of length 1.

AnalysisResultsFisher 15

AnalysisResultsFisher Analysis Results Fisher

Description

Class for analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a Fisher combination test design.

Fields
normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH@ The difference or assumed effect under HO. Is a numeric vector of length 1.

pil The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidencelIntervallLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between O and 1.

16

AnalysisResultsGroupSequential

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidenceIntervallLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

AnalysisResultsGroupSequential
Analysis Results Group Sequential

Description

Class for analysis results results based on a group sequential design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a group sequential design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH@ The difference or assumed effect under HO. Is a numeric vector of length 1.

pil The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

AnalysisResultsInverseNormal 17

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidencelIntervallLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between O and 1.

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between 0 and 1.

finalConfidencelIntervallLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

maxInformation The maximum information. Is a numeric vector of length 1 containing a whole
number.

informationEpsilon The absolute information epsilon, which defines the maximum distance
from the observed information to the maximum information that causes the final analysis.
Updates at the final analysis if the observed information at the final analysis is smaller ("under-
running") than the planned maximum information. Is either a positive integer value specifying
the absolute information epsilon or a floating point number >0 and <1 to define a relative in-
formation epsilon.

AnalysisResultsInverseNormal
Analysis Results Inverse Normal

Description

Class for analysis results results based on an inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the analysis results of a inverse normal design.

18 AnalysisResultsInverseNormal

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH@ The difference or assumed effect under HO. Is a numeric vector of length 1.

pil1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

equalVariances Describes if the variances in two treatment groups are assumed to be the same.
Is a logical vector of length 1.

testActions The test decisions at each stage of the trial. Is a character vector of length kMax.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidencelIntervallLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between O and 1.

finalStage The stage at which the trial ends, either with acceptance or rejection of the null hy-
pothesis. Is a numeric vector of length 1.

finalPValues The final p-value that is based on the stage-wise ordering. Is a numeric vector of
length kMax containing values between O and 1.

finalConfidencelIntervallLowerBounds The lower bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

finalConfidenceIntervalUpperBounds The upper bound of the confidence interval that is based
on the stage-wise ordering. Is a numeric vector of length kMax.

medianUnbiasedEstimates The calculated median unbiased estimates that are based on the stage-
wise ordering. Is a numeric vector of length kMax.

AnalysisResultsMultiArm 19

AnalysisResultsMultiArm
Basic Class for Analysis Results Multi-Arm

Description

A basic class for multi-arm analysis results.

Details
AnalysisResultsMultiArm is the basic class for

* AnalysisResultsMultiArmFisher,
e AnalysisResultsMultiArmInverseNormal, and

* AnalysisResultsConditionalDunnett.

AnalysisResultsMultiArmFisher
Analysis Results Multi-Arm Fisher

Description

Class for multi-arm analysis results based on a Fisher combination test design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a Fisher combination test design.

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH@ The difference or assumed effect under HO. Is a numeric vector of length 1.

pil1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

20

AnalysisResultsMultiArmInverseNormal

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled”, "pairwisePooled”, "notPooled”. Available options for enrichment
designs: "pooled”, "pooledFromFull”, "notPooled”.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidencelIntervallLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between O and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

conditionalPowerSimulated The simulated conditional power, under the assumption of observed
or assumed effect sizes.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

AnalysisResultsMultiArmInverseNormal
Analysis Results Multi-Arm Inverse Normal

Description

Class for multi-arm analysis results based on a inverse normal design.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of an inverse normal design.

AnalysisResultsMultiArmInverseNormal 21

Fields

normalApproximation Describes if a normal approximation was used when calculating p-values.
Default for means is FALSE and TRUE for rates and hazard ratio. Is a logical vector of length 1.

directionUpper Specifies the direction of the alternative, only applicable for one-sided testing.
Default is TRUE which means that larger values of the test statistics yield smaller p-values. Is
a logical vector of length 1.

thetaH@ The difference or assumed effect under HO. Is a numeric vector of length 1.

pi1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. Is a numeric vector.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.

varianceOption Defines the way to calculate the variance in multiple (i.e., >2) treatment arms
or population enrichment designs when testing means. Available options for multiple arms:
"overallPooled”, "pairwisePooled”, "notPooled”. Available options for enrichment
designs: "pooled”, "pooledFromFull”, "notPooled”.

conditionalRejectionProbabilities The probabilities of rejecting the null hypothesis at each
stage, given the stage has been reached. Is a numeric vector of length kMax containing values
between 0 and 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

repeatedConfidencelIntervallLowerBounds The lower bound of the confidence intervals that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedConfidenceIntervalUpperBounds The upper bound of the confidence interval that are
calculated at any stage of the trial. Is a numeric vector of length kMax.

repeatedPValues The p-values that are calculated at any stage of the trial. Is a numeric vector of
length kMax containing values between 0 and 1.

piControl The assumed probability in the control arm for simulation and under which the sample
size recalculation is performed. Is a numeric vector of length 1 containing a value between 0
and 1.

22 as.data.frame.AnalysisResults

AnalysisResultsMultiHypotheses
Basic Class for Analysis Results Multi-Hypotheses

Description

A basic class for multi-hypotheses analysis results.

Details
AnalysisResultsMultiHypotheses is the basic class for

* AnalysisResultsMultiArm and

e AnalysisResultsEnrichment.

as.data.frame.AnalysisResults
Coerce AnalysisResults to a Data Frame

Description

Returns the AnalysisResults object as data frame.

Usage

S3 method for class 'AnalysisResults'
as.data.frame(

X,

row.names = NULL,

optional = FALSE,

L

niceColumnNamesEnabled = FALSE

Arguments

X An AnalysisResults object created by getAnalysisResults().
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
niceColumnNamesEnabled
Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

Details

Coerces the analysis results to a data frame.

Value

Returns a data. frame.

as.data.frame.ParameterSet 23

as.data.frame.ParameterSet
Coerce Parameter Set to a Data Frame

Description

Returns the ParameterSet as data frame.

Usage

S3 method for class 'ParameterSet'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE

Arguments

X A FieldSet object.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters
Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

Details

Coerces the parameter set to a data frame.

Value

Returns a data. frame.

as.data.frame.PowerAndAverageSampleNumberResult
Coerce Power And Average Sample Number Result to a Data Frame

Description

Returns the PowerAndAverageSampleNumberResult as data frame.

24 as.data.frame.StageResults

Usage

S3 method for class 'PowerAndAverageSampleNumberResult'
as.data.frame(

X,

row.names = NULL,

optional = FALSE,

niceColumnNamesEnabled = FALSE,

includeAllParameters = FALSE,

Arguments

X A PowerAndAverageSampleNumberResult object.

niceColumnNamesEnabled
Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters
Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the PowerAndAverageSampleNumberResult object to a data frame.

Value

Returns a data. frame.

Examples

Not run:

data <- as.data.frame(getPowerAndAverageSampleNumber (getDesignGroupSequential()))
head(data)

dim(data)

End(Not run)

as.data.frame.StageResults
Coerce Stage Results to a Data Frame

Description

Returns the StageResults as data frame.

as.data.frame. TrialDesign 25

Usage

S3 method for class 'StageResults'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
type = 1,

Arguments

X A StageResults object.

niceColumnNamesEnabled
Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters
Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the stage results to a data frame.

Value

Returns a data. frame.

as.data.frame.TrialDesign
Coerce TrialDesign to a Data Frame

Description

Returns the TrialDesign as data frame.

Usage

S3 method for class 'TrialDesign'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,

26 as.data.frame. TrialDesignCharacteristics

Arguments

X A TrialDesign object.

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
Details

Each element of the TrialDesign is converted to a column in the data frame.

Value

Returns a data. frame.

Examples

Not run:
as.data.frame(getDesignGroupSequential())

End(Not run)

as.data.frame.TrialDesignCharacteristics
Coerce TrialDesignCharacteristics to a Data Frame

Description

Returns the TrialDesignCharacteristics as data frame.

Usage

S3 method for class 'TrialDesignCharacteristics'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,

as.data.frame. TrialDesignPlan 27

Arguments

X A TrialDesignCharacteristics object.

niceColumnNamesEnabled
Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters

Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
Details

Each element of the TrialDesignCharacteristics is converted to a column in the data frame.

Value

Returns a data. frame.

Examples

Not run:
as.data.frame(getDesignCharacteristics(getDesignGroupSequential()))

End(Not run)

as.data.frame.TrialDesignPlan
Coerce Trial Design Plan to a Data Frame

Description

Returns the TrialDesignPlan as data frame.

Usage

S3 method for class 'TrialDesignPlan'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,

28 as.data.frame. TrialDesignSet

Arguments

X A TrialDesignPlan object.

niceColumnNamesEnabled
Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters
Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

Details

Coerces the design plan to a data frame.

Value

Returns a data. frame.

Examples

Not run:
as.data.frame(getSampleSizeMeans())

End(Not run)

as.data.frame.TrialDesignSet
Coerce Trial Design Set to a Data Frame

Description

Returns the TrialDesignSet as data frame.

Usage

S3 method for class 'TrialDesignSet'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,
niceColumnNamesEnabled = FALSE,
includeAllParameters = FALSE,
addPowerAndAverageSampleNumber = FALSE,
theta = seq(-1, 1, 0.02),
nMax = NA_integer_,

as.matrix.FieldSet 29

Arguments

X A TrialDesignSet object.

niceColumnNamesEnabled
Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

includeAllParameters
Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

addPowerAndAverageSampleNumber
If TRUE, power and average sample size will be added to data frame, default is

FALSE.

theta A vector of standardized effect sizes (theta values), default is a sequence from
-1to 1.

nMax The maximum sample size. Must be a positive integer of length 1.
Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.

Details

Coerces the design set to a data frame.

Value

Returns a data. frame.

Examples

Not run:
designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
as.data.frame(designSet)

End(Not run)

as.matrix.FieldSet Coerce Field Set to a Matrix

Description

Returns the FrameSet as matrix.

Usage

S3 method for class 'FieldSet'
as.matrix(x, ..., enforceRowNames = TRUE, niceColumnNamesEnabled = TRUE)

30 as251Normal

Arguments
X A FieldSet object.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
enforceRowNames

If TRUE, row names will be created depending on the object type, default is TRUE.
niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names

(variable names) otherwise (see make.names).

Details

Coerces the frame set to a matrix.

Value

Returns a matrix.

as251Normal Algorithm AS 251: Normal Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, doi:10.2307/2347754.

Usage
as251Normal(
lower,
upper,
sigma,
eps = le-06,
errorControl = c("strict”, "halvingIntervals"),
intervalSimpsonsRule = 0
)
Arguments
lower Lower limits of integration. Array of N dimensions
upper Upper limits of integration. Array of N dimensions
sigma Values defining correlation structure. Array of N dimensions
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
eps desired accuracy. Defaults to 1e-06

errorControl error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used
intervalSimpsonsRule
Interval width for Simpson’s rule. Value of zero caused a default .24 to be used

https://doi.org/10.2307/2347754

as251StudentT 31

Details

For a multivariate normal vector with correlation structure defined by rho(i,j) = bpd(i) * bpd(j),
computes the probability that the vector falls in a rectangle in n-space with error less than eps.

This function calculates the bdp value from sigma, determines the right inf value and calls mvnprd.

as251StudentT Algorithm AS 251: Student T Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by

https://doi.org/10.2307/2347754

32 ClosedCombinationTestResults

checkInstallationQualificationStatus
Check Installation Qualification Status

Description

This function checks whether the installation qualification for the rpact package has been com-
pleted. If not, it provides a message prompting the user to run the testPackage() function to
perform the qualification.

Usage

checkInstallationQualificationStatus(showMessage = TRUE)

Arguments
showMessage A logical value indicating whether to display a message if the installation quali-
fication has not been completed. Default is TRUE.
Details

The installation qualification is a critical step in ensuring that the rpact package is correctly in-
stalled and validated for use in GxP-relevant environments. This function verifies the qualification
status and informs the user if further action is required.

Value

Invisibly returns TRUE if the installation qualification has been completed, otherwise returns FALSE.

Examples

Not run:
checkInstallationQualificationStatus()

End(Not run)

ClosedCombinationTestResults
Analysis Results Closed Combination Test

Description

Class for multi-arm analysis results based on a closed combination test.

Details

This object cannot be created directly; use getAnalysisResults with suitable arguments to create
the multi-arm analysis results of a closed combination test design.

ConditionalPowerResults 33

Fields
intersectionTest The multiple test used for intersection hypotheses in closed systems of hy-
potheses. Is a character vector of length 1.
indices Indicates which stages are available for analysis.

adjustedStageWisePValues The multiplicity adjusted p-values from the separate stages. Is a
numeric matrix.

overallAdjustedTestStatistics The overall adjusted test statistics.
separatePValues The p-values from the separate stages. Is a numeric matrix.
conditionalErrorRate The calculated conditional error rate.

secondStagePValues For conditional Dunnett test, the conditional or unconditional p-value cal-
culated for the second stage.

rejected Indicates whether a hypothesis is rejected or not.

rejectedIntersections The simulated number of rejected arms in the closed testing procedure..
Is a logical matrix.

ConditionalPowerResults
Conditional Power Results

Description

Class for conditional power calculations

Details

This object cannot be created directly; use getConditionalPower () with suitable arguments to
create the results of a group sequential or a combination test design.

Fields
nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

34 ConditionalPowerResultsEnrichmentRates

ConditionalPowerResultsEnrichmentMeans
Conditional Power Results Enrichment Means

Description

Class for conditional power calculations of enrichment means data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDevs Assumed standard deviations to calculate conditional power in multi-arm trials or
enrichment designs. s a numeric vector.

ConditionalPowerResultsEnrichmentRates
Conditional Power Results Enrichment Rates

Description

Class for conditional power calculations of enrichment rates data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

ConditionalPowerResultsMeans 35

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

piTreatments The assumed rates in the treatment groups for multi-arm and enrichment designs,
i.e., designs with multiple subsets.

piControls The assumed rates in the control group for enrichment designs, i.e., designs with
multiple subsets.

ConditionalPowerResultsMeans
Conditional Power Results Means

Description

Class for conditional power calculations of means data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

assumedStDev The assumed standard deviation(s) for means analysis. Is a numeric vector.

36 ConditionalPowerResultsSurvival

ConditionalPowerResultsRates
Conditional Power Results Rates

Description

Class for conditional power calculations of rates data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

Fields

nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

pil1 The assumed probability or probabilities in the active treatment group in two-group designs,
or the alternative probability for a one-group design.

pi2 The assumed probability in the reference group for two-group designs. Is a numeric vector of
length 1 containing a value between 0 and 1.

ConditionalPowerResultsSurvival
Conditional Power Results Survival

Description

Class for conditional power calculations of survival data

Details

This object cannot be created directly; use getConditionalPower with suitable arguments to create
the results of a group sequential or a combination test design.

dataEnrichmentMeans 37

Fields
nPlanned The sample size planned for each of the subsequent stages. Is a numeric vector of length
kMax containing whole numbers.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

iterations The number of iterations used for simulations. Is a numeric vector of length 1 con-
taining a whole number.

seed The seed used for random number generation. Is a numeric vector of length 1.

simulated Describes if the power for Fisher’s combination test has been simulated. Only applica-
ble when using Fisher designs. Is a logical vector of length 1.

conditionalPower The conditional power at each stage of the trial. Is a numeric vector of length
1 containing a value between 0 and 1.

thetaH1 The assumed effect under the alternative hypothesis. For survival designs, refers to the
hazard ratio. Is a numeric vector.

dataEnrichmentMeans Enrichment Dataset of Means

Description
A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset(dataEnrichment
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeans

Format

A data. frame object.

dataEnrichmentMeansStratified
Stratified Enrichment Dataset of Means

Description
A dataset containing the sample sizes, means, and standard deviations of two groups. Use getDataset (dataEnrichment
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentMeansStratified

Format

A data. frame object.

38 dataEnrichmentSurvival

dataEnrichmentRates Enrichment Dataset of Rates

Description
A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRates

Format

A data. frame object.

dataEnrichmentRatesStratified
Stratified Enrichment Dataset of Rates

Description
A dataset containing the sample sizes and events of two groups. Use getDataset(dataEnrichmentRatesStratified)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentRatesStratified

Format

A data. frame object.

dataEnrichmentSurvival
Enrichment Dataset of Survival Data

Description
A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset (dataEnrichmer
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvival

Format

A data. frame object.

dataEnrichmentSurvivalStratified 39

dataEnrichmentSurvivalStratified
Stratified Enrichment Dataset of Survival Data

Description
A dataset containing the log-rank statistics, events, and allocation ratios of two groups. Use getDataset (dataEnrichmer
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataEnrichmentSurvivalStratified

Format

A data. frame object.

dataMeans One-Arm Dataset of Means

Description
A dataset containing the sample sizes, means, and standard deviations of one group. Use getDataset (dataMeans)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMeans

Format

A data. frame object.

dataMultiArmMeans Multi-Arm Dataset of Means

Description
A dataset containing the sample sizes, means, and standard deviations of four groups. Use getDataset(dataMultiArmMe
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmMeans

Format

A data. frame object.

40 dataRates

dataMultiArmRates Multi-Arm Dataset of Rates

Description
A dataset containing the sample sizes and events of three groups. Use getDataset (dataMultiArmRates)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataMultiArmRates

Format

A data. frame object.

dataMultiArmSurvival Multi-Arm Dataset of Survival Data

Description
A dataset containing the log-rank statistics, events, and allocation ratios of three groups. Use
getDataset(dataMultiArmSurvival) to create a dataset object that can be processed by getAnalysisResults().
Usage

dataMultiArmSurvival

Format

A data. frame object.

dataRates One-Arm Dataset of Rates

Description
A dataset containing the sample sizes and events of one group. Use getDataset(dataRates) to
create a dataset object that can be processed by getAnalysisResults().

Usage

dataRates

Format

A data. frame object.

Dataset 41

Dataset Dataset

Description

Basic class for datasets.

Details
Dataset is the basic class for

e DatasetMeans,
* DatasetRates,
e DatasetSurvival, and

e DatasetEnrichmentSurvival.

This basic class contains the fields stages and groups and several commonly used functions.

Fields

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

groups The group numbers. Is a numeric vector.

DatasetMeans Dataset of Means

Description

Class for a dataset of means.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of means.

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

means The means. Is a numeric vector of length number of stages times number of groups.

stDevs The standard deviations. Is a numeric vector of length number of stages times number of
groups.

overallSampleSizes The overall, i.e., cumulative sample sizes. Is a numeric vector of length
number of stages times number of groups.

42 DatasetSurvival

overallMeans The overall, i.e., cuamulative means. Is a numeric vector of length number of stages
times number of groups.

overallStDevs The overall, i.e., cumulative standard deviations. Is a numeric vector of length
number of stages times number of groups.

DatasetRates Dataset of Rates

Description

Class for a dataset of rates.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of rates.

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

sampleSizes The sample sizes for each group and stage. Is a numeric vector of length number of
stages times number of groups containing whole numbers.

overallSampleSizes The overall, i.e., cumulative sample sizes. Is a numeric vector of length
number of stages times number of groups.

events The number of events in each group at each stage. Is a numeric vector of length number of
stages times number of groups.

overallEvents The overall, i.e., cumulative events. Is a numeric vector of length number of stages
times number of groups containing whole numbers.

DatasetSurvival Dataset of Survival Data

Description

Class for a dataset of survival data.

Details

This object cannot be created directly; better use getDataset with suitable arguments to create a
dataset of survival data.

dataSurvival 43

Fields

groups The group numbers. Is a numeric vector.

stages The stage numbers of the trial. Is a numeric vector of length kMax containing whole num-
bers.

events The number of events in each group at each stage. Is a numeric vector of length number of
stages times number of groups.

overallEvents The overall, i.e., cumulative events. Is a numeric vector of length number of stages
times number of groups containing whole numbers.

allocationRatios The observed allocation ratios. Is a numeric vector of length number of stages
times number of groups.

overallAllocationRatios The cumulative allocation ratios. Is a numeric vector of length num-
ber of stages times number of groups.

logRanks The logrank test statistics at each stage of the trial. Is a numeric vector of length number
of stages times number of groups.

overalllLogRanks The overall, i.e., cumulative logrank test statistics. Is a numeric vector of length
number of stages times number of groups.

dataSurvival One-Arm Dataset of Survival Data

Description

A dataset containing the log-rank statistics, events, and allocation ratios of one group. Use getDataset(dataSurvival)
to create a dataset object that can be processed by getAnalysisResults().

Usage

dataSurvival

Format

A data. frame object.

disableStartupMessages
Disable Startup Messages

Description

This function disables the startup messages for the rpact package by setting the rpact.startup.message.enabled
option to FALSE.

Usage

disableStartupMessages()

44 enableStartupMessages

Details

Once this function is called, the startup messages will remain disabled until explicitly re-enabled us-
ing the enableStartupMessages() function. The current state is saved using the saveOptions()
function.

Value

This function does not return a value. It is called for its side effects.

Examples

Not run:
disableStartupMessages()

End(Not run)

enableStartupMessages Enable Startup Messages

Description

This function enables the startup messages for the rpact package by setting the rpact. startup.message.enabled
option to TRUE.

Usage

enableStartupMessages()

Details

Once this function is called, the startup messages will remain enabled until explicitly disabled using
the disableStartupMessages() function. The current state is saved using the saveOptions()
function.

Value

This function does not return a value. It is called for its side effects.

Examples

Not run:
enableStartupMessages()

End(Not run)

EventProbabilities 45

EventProbabilities Event Probabilities

Description

Class for the definition of event probabilities.

Details

EventProbabilities is a class for the definition of event probabilities.

Fields

time The time values. Is a numeric vector.

accrualTime The assumed accrual time intervals for the study. Is a numeric vector.
accruallntensity The absolute accrual intensities. Is a numeric vector of length kMax.
kappa The shape of the Weibull distribution if kappa!=1. Is a numeric vector of length 1.

piecewiseSurvivalTime The time intervals for the piecewise definition of the exponential sur-
vival time cumulative distribution function. Is a numeric vector.

lambdal The assumed hazard rate in the treatment group. Is a numeric vector of length kMax.
lambda2 The assumed hazard rate in the reference group. Is a numeric vector of length 1.

allocationRatioPlanned The planned allocation ratio (n1 / n2) for the groups. For multi-arm
designs, it is the allocation ratio relating the active arm(s) to the control. Is a positive numeric
vector of length 1.

hazardRatio The hazard ratios under consideration. Is a numeric vector of length kMax.

dropoutRatel The assumed drop-out rate in the treatment group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutRate2 The assumed drop-out rate in the control group. Is a numeric vector of length 1
containing a value between 0 and 1.

dropoutTime The assumed time for drop-out rates in the control and treatment group. Is a numeric
vector of length 1.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

overallEventProbabilities Deprecated field which will be removed in one of the next releases.
Use cumulativeEventProbabilities instead.

cumulativeEventProbabilities The cumulative event probabilities in survival designs. Is a nu-
meric vector.

eventProbabilities1 The event probabilities in treatment group 1. Is a numeric vector.

eventProbabilities2 The event probabilities in treatment group 2. Is a numeric vector.

46 getAccrualTime

FieldSet Field Set

Description

Basic class for field sets.

Details

The field set implements basic functions for a set of fields.

getAccrualTime Get Accrual Time

Description

Returns an AccrualTime object that contains the accrual time and the accrual intensity.

Usage

getAccrualTime(
accrualTime = NA_real_,

L

accruallntensity = NA_real_,

accruallntensityType = c("auto”, "absolute”, "relative"),
maxNumberOfSubjects = NA_real_
)
Arguments
accrualTime The assumed accrual time intervals for the study, defaultis c(@, 12) (for details

see getAccrualTime()).

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
accruallntensity
A numeric vector of accrual intensities, default is the relative intensity @.1 (for
details see getAccrualTime()).
accruallntensityType
A character value specifying the accrual intensity input type. Must be one of

n on

"auto”, "absolute”, or "relative"”; default is "auto”, i.e., if all values are <
1 the type is "relative”, otherwise it is "absolute”.

maxNumberOfSubjects
The maximum number of subjects.

getAccrualTime 47

Value

Returns an AccrualTime object. The following generics (R generic functions) are available for this
result object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

e as.matrix() to coerce the object to amatrix.

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to @ and, additionally, accrualIntensity needs to be specified.
accruallntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > @ needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(@.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = @.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getNumberOfSubjects() for calculating the number of subjects at given time points.

Examples

Not run:
Assume that in a trial the accrual after the first 6 months is doubled
and the total accrual time is 30 months.

48

getAccrualTime

Further assume that a total of 1000 subjects are entered in the trial.
The number of subjects to be accrued in the first 6 months and afterwards
is achieved through
getAccrualTime(
accrualTime = c(@, 6, 30),
accruallntensity = c(0.1, 0.2), maxNumberOfSubjects = 1000

)
The same result is obtained via the list based definition
getAccrualTime(
list(
"9 - <6" =20.1,
"6 - <=30" = 0.2
),

maxNumberOfSubjects = 1000
)

Calculate the end of accrual at given absolute intensity:
getAccrualTime(

accrualTime = c(0, 6),

accruallntensity = c(18, 36), maxNumberOfSubjects = 1000
)

Via the list based definition this is
getAccrualTime(
list(
"9 - <6" = 18,
">=6" = 36
)’
maxNumberOfSubjects = 1000
)

You can use an accrual time object in getSampleSizeSurvival() or
getPowerSurvival().
For example, if the maximum number of subjects and the follow up
time needs to be calculated for a given effect size:
accrualTime <- getAccrualTime(

accrualTime = c(@, 6, 30),

accruallntensity = c(0.1, 0.2)
)

getSampleSizeSurvival(accrualTime = accrualTime, pil = 0.4, pi2 = 0.2)

Or if the power and follow up time needs to be calculated for given
number of events and subjects:
accrualTime <- getAccrualTime(

accrualTime = c(0, 6, 30),

accruallntensity = c(0.1, 0.2), maxNumberOfSubjects = 110

)

getPowerSurvival(
accrualTime = accrualTime, pil = 0.4, pi2 = 0.2,
maxNumberOfEvents = 46

)

How to show accrual time details

You can use a sample size or power object as argument for the function
getAccrualTime():

getAnalysisResults 49

sampleSize <- getSampleSizeSurvival(
accrualTime = c(@, 6), accruallntensity = c(22, 53),
lambda2 = 0.05, hazardRatio = 0.8, followUpTime = 6
)
sampleSize
accrualTime <- getAccrualTime(sampleSize)
accrualTime

End(Not run)

getAnalysisResults Get Analysis Results

Description

Calculates and returns the analysis results for the specified design and data.

Usage

getAnalysisResults(
design,
datalnput,
directionUpper = NA,
thetaH® = NA_real_,
nPlanned = NA_real_,
allocationRatioPlanned = 1,
stage = NA_integer_,
maxInformation = NULL,
informationEpsilon = NULL

)
Arguments
design The trial design.
datalnput The summary data used for calculating the test results. This is either an element

of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset (). For more information see getDataset ().

Further arguments to be passed to methods (cf., separate functions in "See Also"
below), e.g.,

thetaH1 and stDevH1 (or assumedStDev / assumedStDevs), pil, pi2, or piTreatments, piContr
The assumed effect size, standard deviation or rates to calculate the con-
ditional power if nPlanned is specified. For survival designs, thetaH1
refers to the hazard ratio. For one-armed trials with binary outcome, only
pil can be specified, for two-armed trials with binary outcome, pil and
pi2 can be specified referring to the assumed treatment and control rate,
respectively. In multi-armed or enrichment designs, you can specify a
value or a vector with elements referring to the treatment arms or the sub-
populations, respectively. For testing rates, the parameters to be specified
are piTreatments and piControl (multi-arm designs) and piTreatments

getAnalysisResults

and piControls (enrichment designs).
If not specified, the conditional power is calculated under the assumption
of observed effect sizes, standard deviations, rates, or hazard ratios.
iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.
seed Seed for simulating the conditional power for Fisher’s combination test.
See above, default is a random seed.
normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.
equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.
stdErrorEstimate Estimate of standard error for calculation of final confi-
dence intervals for comparing rates in two treatment groups, default is
"pooled”.
intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett"”, "Bonferroni”,
"Simes”, "Sidak", and "Hierarchical”, default is "Dunnett"”. Four op-
tions are available in population enrichment designs: "SpiessensDebois”
(one subset only), "Bonferroni”, "Simes"”, and "Sidak", defaultis "Simes".
varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled”, "pairwisePooled”,
and "notPooled”, default is "overallPooled”. For enrichment designs,
the options are: "pooled”, "pooledFromFull” (one subset only), and "notPooled”,
default is "pooled”.
stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-

ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH@ is the non-inferiority bound. That is, in
case of (one-sided) testing of
* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.
* rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

getAnalysisResults 51

* survival data: a bound for testing HO: hazard ratio = thetaHo !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaHe !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

stage The stage number (optional). Default: total number of existing stages in the data
input.

maxInformation Positive value specifying the maximum information.

informationEpsilon
Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, defaultis 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

Details

Given a design and a dataset, at given stage the function calculates the test results (effect sizes, stage-
wise test statistics and p-values, overall p-values and test statistics, conditional rejection probability
(CRP), conditional power, Repeated Confidence Intervals (RCIs), repeated overall p-values, and
final stage p-values, median unbiased effect estimates, and final confidence intervals.

For designs with more than two treatments arms (multi-arm designs) or enrichment designs a closed
combination test is performed. That is, additionally the statistics to be used in a closed testing
procedure are provided.

The conditional power is calculated if the planned sample size for the subsequent stages (nPlanned)
is specified. The conditional power is calculated either under the assumption of the observed effect
or under the assumption of an assumed effect, that has to be specified (see above).

For testing rates in a two-armed trial, pil and pi2 typically refer to the rates in the treatment and the
control group, respectively. This is not mandatory, however, and so pil and pi2 can be interchanged.
In many-to-one multi-armed trials, piTreatments and piControl refer to the rates in the treatment
arms and the one control arm, and so they cannot be interchanged. piTreatments and piControls in

52 getAnalysisResults

enrichment designs can principally be interchanged, but we use the plural form to indicate that the
rates can be differently specified for the sub-populations.

Median unbiased effect estimates and confidence intervals are calculated if a group sequential de-
sign or an inverse normal combination test design was chosen, i.e., it is not applicable for Fisher’s
p-value combination test design. For the inverse normal combination test design with more than
two stages, a warning informs that the validity of the confidence interval is theoretically shown only
if no sample size change was performed.

A final stage p-value for Fisher’s combination test is calculated only if a two-stage design was
chosen. For Fisher’s combination test, the conditional power for more than one remaining stages is
estimated via simulation.

Final stage p-values, median unbiased effect estimates, and final confidence intervals are not calcu-
lated for multi-arm and enrichment designs.

Value

Returns an AnalysisResults object. The following generics (R generic functions) are available
for this result object:

* names to obtain the field names,

* print() to print the object,

e summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getObservedInformationRates()

Other analysis functions: getClosedCombinationTestResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower (), getConditionalRejectionProbabilities(), getFinalConfidencelInterval(),
getFinalPValue(), getRepeatedConfidencelntervals(), getRepeatedPValues(), getStageResults(),
getTestActions()

Examples

Not run:
Example 1 One-Sample t Test
Perform an analysis within a three-stage group sequential design with
0'Brien & Fleming boundaries and one-sample data with a continuous outcome
where HO: mu = 1.2 is to be tested
dsnGS <- getDesignGroupSequential()
dataMeans <- getDataset(
n = c(30, 30),
means = c(1.96, 1.76),

getAnalysisResults

stDevs = ¢(1.92, 2.01)

)
getAnalysisResults(design = dsnGS, datalnput = dataMeans, thetaHo = 1.2)

You can obtain the results when performing an inverse normal combination test
with these data by using the commands

dsnIN <- getDesignInverseNormal()

getAnalysisResults(design = dsnIN, datalnput = dataMeans, thetaH® = 1.2)

Example 2 Use Function Approach with Time to Event Data
Perform an analysis within a use function approach according to an
0'Brien & Fleming type use function and survival data where
where HO: hazard ratio = 1 is to be tested. The events were observed
over time and maxInformation = 120, informationEpsilon = 5 specifies
that 116 > 120 - 5 observed events defines the final analysis.
design <- getDesignGroupSequential (typeOfDesign = "asOF")
dataSurvival <- getDataset(
cumulativeEvents = c(33, 72, 116),
cumulativeLogRanks = c(1.33, 1.88, 1.902)
)
getAnalysisResults(design,
datalnput = dataSurvival,
maxInformation = 120, informationEpsilon = 5

)
Example 3 Multi-Arm Design
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results together with the CRP, conditional power
(assuming a total of 40 subjects for each comparison and effect sizes 0.5
and 0.8 for treatment arm 1 and 3, respectively, and standard deviation 1.2),
RCIs and p-values of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group; displayed with summary and plot commands):
data <- getDataset(
nl = c(22, 23),
n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),
means1 = c¢(1.63, 1.51),
means2 = c(1.4, NA),

means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = ¢(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18)
)
design <- getDesignInverseNormal(kMax = 4)
x <- getAnalysisResults(design,
datalnput = data, intersectionTest = "Bonferroni”,
nPlanned = c(40, 40), thetaHl = c(0.5, NA, 0.8), assumedStDevs = 1.2
)
summary (x)
if (require(ggplot2)) plot(x, thetaRange = c(0, 0.8))
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)
y <- getAnalysisResults(design,

53

54

getClosedCombinationTestResults

datalnput = data,

nPlanned = 40, thetaHl = c(@.5, NA, 0.8), assumedStDevs = 1.2, stage = 1
)
summary (y)
if (require(ggplot2)) plot(y, thetaRange = c(0, 0.4))

Example 4 Enrichment Design

Perform an two-stage enrichment design analysis with O'Brien & Fleming boundaries
where one sub-population (S1) and a full population (F) are considered as primary
analysis sets. At interim, S1 is selected for further analysis and the sample
size is increased accordingly. With the Spiessens & Debois intersection test,

the results of a closed adaptive test procedure together with the CRP, repeated
RCIs and p-values are obtained as follows with the given data (displayed with
summary and plot commands):

design <- getDesignInverseNormal(kMax = 2, typeOfDesign = "OF")

dataS1 <- getDataset(

means1 = c(13.2, 12.8),

means2 = c(11.1, 10.8),

stDevl = c(3.4, 3.3),

stDev2 = c(2.9, 3.5),

nl = c(21, 42),

n2 = c(19, 39)

e R

)
dataNotS1 <- getDataset(
means1 = c(11.8, NA),
means2 = c(10.5, NA),
stDevl = c(3.6, NA),
stDev2 = c(2.7, NA),
n1l = c(15, NA),
n2 = c(13, NA)
)
dataBoth <- getDataset(S1 = dataS1, R = dataNotS1)
x <- getAnalysisResults(design,
datalnput = dataBoth,

intersectionTest = "SpiessensDebois”,
varianceOption = "pooledFromFull”,
stratifiedAnalysis = TRUE

)

summary (x)

if (require(ggplot2)) plot(x, type = 2)

End(Not run)

getClosedCombinationTestResults

Get Closed Combination Test Results

Description

Calculates and returns the results from the closed combination test in multi-arm and population
enrichment designs.

Usage

getClosedCombinationTestResults(stageResults)

getClosedCombinationTestResults 55

Arguments

stageResults The results at given stage, obtained from getStageResults().

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

names () to obtain the field names,

print() to print the object,

summary () to display a summary of the object,

plot() to plot the object,

as.data.frame() to coerce the object to a data. frame,

as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedConditionalDunnettTestResults(),
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidencelInterval(),
getFinalPValue(), getRepeatedConfidencelntervals(), getRepeatedPValues(), getStageResults(),

getTestActions()
Examples
Not run:
In a four-stage combination test design with O'Brien & Fleming boundaries
at the first stage the second treatment arm was dropped. With the Bonferroni
intersection test, the results of a closed adaptive test procedure are
obtained as follows with the given data (treatment arm 4 refers to the
reference group):

data <- getDataset(

nl = c(22, 23),

n2 = c(21, NA),
n3 = c(20, 25),
n4 = c(25, 27),

means1 = c(1.63, 1.51),
means2 = c(1.4, NA),
means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = ¢(1.2, 1.4),
stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = c(1.02, 1.18)

56 getClosedConditionalDunnettTestResults

design <- getDesignInverseNormal(kMax = 4)
stageResults <- getStageResults(design,
datalnput = data,
intersectionTest = "Bonferroni”

)
getClosedCombinationTestResults(stageResults)

End(Not run)

getClosedConditionalDunnettTestResults
Get Closed Conditional Dunnett Test Results

Description

Calculates and returns the results from the closed conditional Dunnett test.

Usage

getClosedConditionalDunnettTestResults(
stageResults,
stage = stageResults$stage

)

Arguments

stageResults The results at given stage, obtained from getStageResults().

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For performing the conditional Dunnett test the design must be defined through the function getDesignConditionalDuni
See Koenig et al. (2008) and Wassmer & Brannath (2016), chapter 11 for details of the test proce-
dure.

Value

Returns a ClosedCombinationTestResults object. The following generics (R generic functions)
are available for this result object:

¢ names() to obtain the field names,

e print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

getConditionalPower 57

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getConditionalPower (]
getConditionalRejectionProbabilities(), getFinalConfidencelInterval(), getFinalPValue(),
getRepeatedConfidencelntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:

In a two-stage design a conditional Dunnett test should be performed

where the unconditional second stage p-values should be used for the

test decision.

At the first stage the second treatment arm was dropped. The results of
a closed conditionsal Dunnett test are obtained as follows with the given
data (treatment arm 4 refers to the reference group):

data <- getDataset(

nl = c(22, 23),

n2 = c(21, NA),

n3 = c(20, 25),

n4 = c(25, 27),

means1 = c(1.63, 1.51),
means2 = c(1.4, NA),

means3 = c(0.91, 0.95),
means4 = c(0.83, 0.75),
stds1 = ¢(1.2, 1.4),

stds2 = c(1.3, NA),
stds3 = c(1.1, 1.14),
stds4 = ¢(1.02, 1.18)

)

For getting the results of the closed test procedure, use the following commands:
design <- getDesignConditionalDunnett(secondStageConditioning = FALSE)

stageResults <- getStageResults(design, datalnput = data)
getClosedConditionalDunnettTestResults(stageResults)

End(Not run)

getConditionalPower Get Conditional Power

Description

Calculates and returns the conditional power.

58 getConditionalPower

Usage

getConditionalPower (stageResults, ..., nPlanned, allocationRatioPlanned = 1)

Arguments

stageResults The results at given stage, obtained from getStageResults().
Further (optional) arguments to be passed:

thetaH1 and stDevH1 (or assumedStDev / assumedStDevs), pil, pi2, or piTreatments, piContr

The assumed effect size, standard deviation or rates to calculate the con-
ditional power if nPlanned is specified. For survival designs, thetaH1
refers to the hazard ratio. For one-armed trials with binary outcome, only
pil can be specified, for two-armed trials with binary outcome, pil and
pi2 can be specified referring to the assumed treatment and control rate,
respectively. In multi-armed or enrichment designs, you can specify a
value or a vector with elements referring to the treatment arms or the sub-
populations, respectively. For testing rates, the parameters to be specified
are piTreatments and piControl (multi-arm designs) and piTreatments
and piControls (enrichment designs).

If not specified, the conditional power is calculated under the assumption
of observed effect sizes, standard deviations, rates, or hazard ratios.

iterations Iterations for simulating the power for Fisher’s combination test.
If the power for more than one remaining stages is to be determined for
Fisher’s combination test, it is estimated via simulation with specified
iterations, the default is 1000.

seed Seed for simulating the conditional power for Fisher’s combination test.
See above, default is a random seed.

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

Details

The conditional power is calculated if the planned sample size for the subsequent stages is specified.
For testing rates in a two-armed trial, pil and pi2 typically refer to the rates in the treatment and the
control group, respectively. This is not mandatory, however, and so pil and pi2 can be interchanged.
In many-to-one multi-armed trials, piTreatments and piControl refer to the rates in the treatment
arms and the one control arm, and so they cannot be interchanged. piTreatments and piControls in

getConditionalPower 59

enrichment designs can principally be interchanged, but we use the plural form to indicate that the
rates can be differently specified for the sub-populations.

For Fisher’s combination test, the conditional power for more than one remaining stages is estimated
via simulation.

Value

Returns a ConditionalPowerResults object. The following generics (R generic functions) are
available for this result object:

* names() to obtain the field names,

* print() to print the object,

e summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

plot.StageResults() or plot.AnalysisResults() for plotting the conditional power.

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalRejectionProbabilities(), getFinalConfidencelInterval(), getFinalPValue(),
getRepeatedConfidencelntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples
Not run:
data <- getDataset(
n1 = c(22, 13, 22, 13),
n2 = c(22, 11, 22, 11),

means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 1, 2.5),
stds1 = c(1, 2, 2, 1.3),
stds2 = c(1, 2, 2, 1.3)
)
stageResults <- getStageResults(
getDesignGroupSequential (kMax = 4),
datalnput = data, stage = 2, directionUpper = FALSE
)
getConditionalPower(stageResults, thetaHl = -0.4,
nPlanned = c(64, 64), assumedStDev = 1.5,
allocationRatioPlanned = 3

)

End(Not run)

60 getConditionalRejectionProbabilities

getConditionalRejectionProbabilities
Get Conditional Rejection Probabilities

Description

Calculates the conditional rejection probabilities (CRP) for given test results.

Usage

getConditionalRejectionProbabilities(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().
Further (optional) arguments to be passed:
iterations Iterations for simulating the conditional rejection probabilities for
Fisher’s combination test. For checking purposes, it can be estimated via
simulation with specified iterations.

seed Seed for simulating the conditional rejection probabilities for Fisher’s
combination test. See above, default is a random seed.

Details

The conditional rejection probability is the probability, under HO, to reject HO in one of the subse-
quent (remaining) stages. The probability is calculated using the specified design. For testing rates
and the survival design, the normal approximation is used, i.e., it is calculated with the use of the
prototype case testing a mean for normally distributed data with known variance.

The conditional rejection probabilities are provided up to the specified stage.

For Fisher’s combination test, you can check the validity of the CRP calculation via simulation.

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each col-
umn represents a stage, each row a comparison) containing the conditional rejection probabilities.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalPower (), getFinalConfidencelnterval(), getFinalPValue(), getRepeatedConfidencelnterva
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
Calculate CRP for a Fisher's combination test design with
two remaining stages and check the results by simulation.
design <- getDesignFisher(

kMax = 4, alpha = 0.01,

informationRates = c(0.1, 0.3, 0.8, 1)

getData 61

data <- getDataset(n = c(40, 40), events = c(20, 22))
sr <- getStageResults(design, data, thetaHo® = 0.4)
getConditionalRejectionProbabilities(sr)
getConditionalRejectionProbabilities(sr,

simulateCRP = TRUE,

seed = 12345, iterations = 10000

)

End(Not run)

getData Get Simulation Data

Description

Returns the aggregated simulation data.

Usage

getData(x)

getData.SimulationResults(x)

Arguments
X A SimulationResults object created by getSimulationMeans(),
getSimulationRates(), getSimulationSurvival(), getSimulationMultiArmMeans(),
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().
Details

This function can be used to get the aggregated simulated data from an simulation results object,
for example, obtained by getSimulationSurvival(). In this case, the data frame contains the
following columns:

. iterationNumber: The number of the simulation iteration.

. stageNumber: The stage.

. pi1: The assumed or derived event rate in the treatment group.

1
2
3
4. pi2: The assumed or derived event rate in the control group.
5. hazardRatio: The hazard ratio under consideration (if available).
6. analysisTime: The analysis time.

7

. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

*®

eventsPerStagel: The observed number of events per stage in treatment group 1.
9. eventsPerStage2: The observed number of events per stage in treatment group 2.
10. eventsPerStage: The observed number of events per stage in both treatment groups.

11. rejectPerStage: 1 if null hypothesis can be rejected, O otherwise.

62 getDataset

12. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

13. futilityPerStage: 1 if study should be stopped for futility, O otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

16. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1 or pi1H1 and pi2H1.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. hazardRatioEstimatelR: The estimated hazard ratio, derived from the log-rank statistic.

A subset of variables is provided for getSimulationMeans(), getSimulationRates(), getSimulationMultiArmMean:
getSimulationMultiArmRates(), or getSimulationMultiArmSurvival().

Value

Returns a data. frame.

Examples

Not run:

results <- getSimulationSurvival(
pil = seq(@.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

data <- getData(results)

head(data)

dim(data)

End(Not run)

getDataset Get Dataset

Description

Creates a dataset object and returns it.

Usage
getDataset (..., floatingPointNumbersEnabled = FALSE)
getDataSet (..., floatingPointNumbersEnabled = FALSE)

getDataset 63

Arguments

A data.frame or some data vectors defining the dataset.

floatingPointNumbersEnabled
If TRUE, sample sizes and event numbers can be specified as floating-point num-
bers (this make sense, e.g., for theoretical comparisons);
by default floatingPointNumbersEnabled = FALSE, i.e., samples sizes and event
numbers defined as floating-point numbers will be truncated.

Details

The different dataset types DatasetMeans, of DatasetRates, or DatasetSurvival can be created
as follows:

* An element of DatasetMeans for one sample is created by
getDataset (sampleSizes =, means =, stDevs =) where
sampleSizes, means, stDevs are vectors with stage-wise sample sizes, means and standard
deviations of length given by the number of available stages.

* An element of DatasetMeans for two samples is created by
getDataset (sampleSizes1 =, sampleSizes2 =, means1 =, means2 =,
stDevs1 =, stDevs2 =) where sampleSizes1, sampleSizes2, means1, means2, stDevs]T,
stDevs2 are vectors with stage-wise sample sizes, means and standard deviations for the two
treatment groups of length given by the number of available stages.

* An element of DatasetRates for one sample is created by
getDataset(sampleSizes =, events =) where sampleSizes, events are vectors with stage-
wise sample sizes and events of length given by the number of available stages.

* An element of DatasetRates for two samples is created by
getDataset (sampleSizes1 =, sampleSizes2 =, events1 =, events2 =) where sampleSizes1,
sampleSizes2, events1, events?2 are vectors with stage-wise sample sizes and events for the
two treatment groups of length given by the number of available stages.

* An element of DatasetSurvival is created by
getDataset(events =, logRanks =, allocationRatios =) where events, logRanks, and
allocation ratios are the stage-wise events, (one-sided) logrank statistics, and allocation
ratios.

¢ Anelement of DatasetMeans, DatasetRates, and DatasetSurvival for more than one com-
parison is created by adding subsequent digits to the variable names. The system can analyze
these data in a multi-arm many-to-one comparison setting where the group with the highest
index represents the control group.

Prefix overall[Capital case of first letter of variable name]. .. for the variable names en-

ables entering the overall (cumulative) results and calculates stage-wise statistics. Since rpact ver-

sion 3.2, the prefix cumulative[Capital case of first letter of variable name]. .. or cum[Capital
case of first letter of variable name]. .. can alternatively be used for this.

n can be used in place of samplesizes.

Note that in survival design usually the overall (cumulative) events and logrank test statistics are
provided in the output, so

getDataset(cumulativeEvents=, cumulativelogRanks =, cumulativeAllocationRatios =)
is the usual command for entering survival data. Note also that for cumulativelogranks also the
z scores from a Cox regression can be used.

For multi-arm designs, the index refers to the considered comparison. For example,
getDataset(eventsl=c(13, 33), logRanks1 =c(1.23, 1.55), events2 =c(16, NA), logRanks2

64

getDataset

=c(1.55, NA))

refers to the case where one active arm (1) is considered at both stages whereas active arm 2 was
dropped at interim. Number of events and logrank statistics are entered for the corresponding com-
parison to control (see Examples).

For enrichment designs, the comparison of two samples is provided for an unstratified (sub-population
wise) or stratified data input.

For non-stratified (sub-population wise) data input the data sets are defined for the sub-populations
S1, S2, ..., F, where F refers to the full populations. Use of getDataset(S1=,S2, ..., F=)
defines the data set to be used in getAnalysisResults() (see examples)

For stratified data input the data sets are defined for the strata S1, S12, S2, ..., R, where R refers to the
remainder of the strata such that the union of all sets is the full population. Use of getDataset(S1 =

, S12=,S2, ..., R=) defines the data set to be used in getAnalysisResults() (see examples)
For survival data, for enrichment designs the log-rank statistics can only be entered as stratified
log-rank statistics in order to provide strong control of Type I error rate. For stratified data input, the
variables to be specified in getDataset() are cumEvents, cumExpectedEvents, cumVarianceEvents,
and cumAllocationRatios oroverallEvents, overallExpectedEvents, overallVarianceEvents,
and overallAllocationRatios. From this, (stratified) log-rank tests and and the independent in-
crements are calculated.

Value

Returns a Dataset object. The following generics (R generic functions) are available for this result
object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

Examples

Not run:
Create a Dataset of Means (one group):
datasetOfMeans <- getDataset(

n = c(22, 11, 22, 11),

means = c(1, 1.1, 1, 1),

stDevs = c(1, 2, 2, 1.3)
)
datasetOfMeans
datasetOfMeans$show(showType = 2)

datasetOfMeans2 <- getDataset(
cumulativeSampleSizes = c(22, 33, 55, 66),
cumulativeMeans = c¢(1.000, 1.033, 1.020, 1.017),
cumulativeStDevs = c(1.00, 1.38, 1.64, 1.58)

)

datasetOfMeans2

datasetOfMeans2$show(showType = 2)

as.data.frame(datasetOfMeans?2)

Create a Dataset of Means (two groups):

getDataset

datasetOfMeans3 <- getDataset(
nl = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),
means1 = c(1, 1.1, 1, 1),
means?2 c(1.4, 1.5, 3, 2.5),
stDevs1 c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)
datasetOfMeans3

datasetOfMeans4 <- getDataset(
cumulativeSampleSizesl = c(22, 33, 55, 66),
cumulativeSampleSizes2 = c(22, 35, 57, 70),
cumulativeMeans1 = c(1, 1.033, 1.020, 1.017),
cumulativeMeans2 = c(1.4, 1.437, 2.040, 2.126),

cumulativeStDevsl = c(1, 1.38, 1.64, 1.58),
cumulativeStDevs2 = c(1, 1.43, 1.82, 1.74)
)
datasetOfMeans4

df <- data.frame(

stages = 1:4,
nl = c(22, 11, 22, 11),
n2 = c(22, 13, 22, 13),

means1 = c(1, 1.1, 1, 1),
means2 = c(1.4, 1.5, 3, 2.5),
stDevsl = c(1, 2, 2, 1.3),
stDevs2 = c(1, 2, 2, 1.3)

)

datasetOfMeans5 <- getDataset(df)

datasetOfMeans5

Create a Dataset of Means (three groups) where the comparison of
treatment arm 1 to control is dropped at the second interim stage:
datasetOfMeans6 <- getDataset(

cumN1 = c(22, 33, NA),
cumN2 = c(20, 34, 56),
cumN3 = c(22, 31, 52),

cumMeans1 = c(1.64, 1.54, NA),

cumMeans?2 = c(1.7, 1.5, 1.77),

cumMeans3 = c(2.5, 2.06, 2.99),

cumStDevs1 = c(1.5, 1.9, NA),

cumStDevs2 = ¢(1.3, 1.3, 1.1),

cumStDevs3 = c(1, 1.3, 1.8))
datasetOfMeans6

Create a Dataset of Rates (one group):
datasetOfRates <- getDataset(
n =c(8, 10, 9, 11),
events = c(4, 5, 5, 6)
)
datasetOfRates

Create a Dataset of Rates (two groups):
datasetOfRates2 <- getDataset(

n2 = c(8, 10, 9, 11),

n1 = c(11, 13, 12, 13),

getDataset

events2 = c¢(3, 5, 5, 6),
eventsl = c(10, 10, 12, 12)
)
datasetOfRates2

Create a Dataset of Rates (three groups) where the comparison of
treatment arm 2 to control is dropped at the first interim stage:
datasetOfRates3 <- getDataset(

cumN1 = c(22, 33, 44),
cumN2 = c(20, NA, NA),
cumN3 = c(20, 34, 44),

cumEventsl = c(11, 14, 22),

cumEvents2 = c(17, NA, NA),

cumEvents3 = c(17, 19, 33))
datasetOfRates3

Create a Survival Dataset

datasetSurvival <- getDataset(
cumkvents = c(8, 15, 19, 31),
cumAllocationRatios = c(1, 1, 1, 2),
cumLogRanks = c¢(1.52, 1.98, 1.99, 2.11)

)

datasetSurvival

Create a Survival Dataset with four comparisons where treatment

arm 2 was dropped at the first interim stage, and treatment arm 4
at the second.

datasetSurvival2 <- getDataset(

cumEvents1 = c(18, 45, 56),
cumEvents2 = c(22, NA, NA),
cumkEvents3 = c(12, 41, 56),
cumEvents4 = c(27, 56, NA),

cumLogRanks1 = ¢(1.52, 1.98, 1.99),
cumLogRanks2 = c(3.43, NA, NA),
cumLogRanks3 = c(1.45, 1.67, 1.87),
cumLogRanks4 = c¢(1.12, 1.33, NA)

)

datasetSurvival2

Enrichment: Stratified and unstratified data input
The following data are from one study. Only the first
(stratified) data input enables a stratified analysis.

Stratified data input

S1 <- getDataset(
sampleSizel = c(18, 17),
sampleSize2 = c(12, 33),

mean1 = c(125.6, 111.1),
mean2 = c(1e7.7, 77.7),

stDev1 = ¢c(120.1, 145.6),
stDev2 = ¢(128.5, 133.3))

S2 <- getDataset(
sampleSizel = c(11, NA),
sampleSize2 = c(14, NA),
meanl = c(100.1, NA),
mean2 = c(68.3, NA),
stDevl = ¢(116.8, NA),

getDesignCharacteristics

stDev2 = c(124.0, NA))
S12 <- getDataset(

sampleSizel = c(21, 17),

sampleSize2 = c(21, 12),

meanl = ¢(135.9, 117.7),
mean2 = c(84.9, 107.7),
stDev1 = ¢c(185.0, 92.3),
stDev2 = ¢(139.5, 107.7))

R <- getDataset(
sampleSizel = c(19, NA),
sampleSize2 = c(33, NA),

mean1 = c(142.4, NA),

mean2 = c(77.1, NA),

stDev1 = c(120.6, NA),

stDev2 = ¢(163.5, NA))
dataEnrichment <- getDataset(S1 =
dataEnrichment

Unstratified data input

SIN <- getDataset(
sampleSizel = c(39, 34),
sampleSize2 = c(33, 45),

S1, S2 = S2, S12 = S12,

stDev1 = c(156.503, 120.084),
stDev2 = c(134.025, 126.502),
meanl = c(131.146, 114.4),
mean2 = ¢(93.191, 85.7))

S2N <- getDataset(
sampleSizel = c(32, NA),
sampleSize2 = c(35, NA),

stDev1 = ¢(163.645, NA),
stDev2 = ¢(131.888, NA),
mean1 = ¢(123.594, NA),
mean2 = ¢(78.26, NA))

F <- getDataset(
sampleSizel = c(69, NA),
sampleSize2 = c(80, NA),

stDev1 = ¢(165.468, NA),
stDev2 = c(143.979, NA),
mean1 = ¢(129.296, NA),
mean2 = c(82.187, NA))

dataEnrichmentN <- getDataset(S1 =

dataEnrichmentN

End(Not run)

SIN, S2 = S2N, F = F)

R =R)

67

getDesignCharacteristics
Get Design

Characteristics

Description

Calculates the characteristics of a design and returns it.

68 getDesignCharacteristics

Usage
getDesignCharacteristics(design = NULL, ...)
Arguments
design The trial design.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
Details

Calculates the inflation factor (IF), the expected reduction in sample size under H1, under HO, and
under a value in between HO and H1. Furthermore, absolute information values are calculated under
the prototype case testing HO: mu = 0 against H1: mu = 1.

Value

Returns a TrialDesignCharacteristics object. The following generics (R generic functions) are
available for this result object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignConditionalDunnett(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal (), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber ()

Examples

Not run:

Calculate design characteristics for a three-stage 0'Brien & Fleming

design at power 90% and compare it with Pocock's design.
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1))
getDesignCharacteristics(getDesignGroupSequential(beta = 0.1, typeOfDesign = "P"))

End(Not run)

getDesignConditionalDunnett 69

getDesignConditionalDunnett

Get Design Conditional Dunnett Test

Description

Defines the design to perform an analysis with the conditional Dunnett test.

Usage

getDesignConditionalDunnett(
alpha = 0.025,
informationAtInterim = 0.5,

L

secondStageConditioning = TRUE,
directionUpper = NA

)
Arguments
alpha The significance level alpha, default is @.025. Must be a positive numeric of
length 1.
informationAtInterim

The information to be expected at interim, default is informationAtInterim =
0.5.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

secondStageConditioning

directionUpper

Details

The way the second stage p-values are calculated within the closed system of
hypotheses. If secondStageConditioning = FALSE is specified, the uncondi-
tional adjusted p-values are used, otherwise conditional adjusted p-values are
calculated, default is secondStageConditioning = TRUE (for details, see Koenig
et al., 2008).

Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

For performing the conditional Dunnett test the design must be defined through this function. You
can define the information fraction and the way of how to compute the second stage p-values only
in the design definition, and not in the analysis call.

See getClosedConditionalDunnettTestResults() for an example and Koenig et al. (2008) and
Wassmer & Brannath (2016), chapter 11 for details of the test procedure.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this

result object:

* names() to obtain the field names,

70 getDesignFisher

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignFisher(), getDesignGroupSequential(),
getDesignInverseNormal (), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber ()

getDesignFisher Get Design Fisher

Description

Performs Fisher’s combination test and returns critical values for this design.

Usage

getDesignFisher(

kMax = NA_integer_,

alpha = NA_real_,

method = c("equalAlpha”, "fullAlpha”, "nolnteraction”, "userDefinedAlpha"),
userAlphaSpending = NA_real_,
alpha@Vec = NA_real_,
informationRates = NA_real_,
sided = 1,

bindingFutility = NA,
directionUpper = NA,
tolerance = 1e-14,

iterations = 0,

seed = NA_real_

)
Arguments
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
kMax The maximum number of stages K. Must be a positive integer of length 1 (default

value is 3). The maximum selectable kMax is 2@ for group sequential or inverse
normal and 6 for Fisher combination test designs.

getDesignFisher 71

alpha The significance level alpha, default is @.025. Must be a positive numeric of
length 1.
method "equalAlpha”, "fullAlpha”, "noInteraction”, or "userDefinedAlpha”, de-

fault is "equalAlpha” (for details, see Wassmer, 1999).

userAlphaSpending
The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: @ <=
alpha_1<= ... <= alpha_K <= alpha.

alpha@Vvec Stopping for futility bounds for stage-wise p-values.

informationRates
The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

bindingFutility
If bindingFutility = TRUE is specified the calculation of the critical values is
affected by the futility bounds (default is TRUE).

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

tolerance The numerical tolerance, default is 1e-14.

iterations The number of simulation iterations, e.g., getDesignFisher(iterations =
100000) checks the validity of the critical values for the design. The default
value of iterations is 0, i.e., no simulation will be executed.

seed Seed for simulating the power for Fisher’s combination test. See above, default
is a random seed.

Details

getDesignFisher() calculates the critical values and stage levels for Fisher’s combination test as
described in Bauer (1989), Bauer and Koehne (1994), Bauer and Roehmel (1995), and Wassmer
(1999) for equally and unequally sized stages.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

* names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

72 getDesignGroupSequential

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet () for creating a set of designs to compare.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignGroupSequen
getDesignInverseNormal (), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber ()

Examples

Not run:

Calculate critical values for a two-stage Fisher's combination test

with full level alpha = 0.05 at the final stage and stopping for

futility bound alpha® = ©.50, as described in Bauer and Koehne (1994).
getDesignFisher(kMax = 2, method = "fullAlpha"”, alpha = 0.05, alpha@Vec = 0.50)

End(Not run)

getDesignGroupSequential
Get Design Group Sequential

Description

Provides adjusted boundaries and defines a group sequential design.

Usage

getDesignGroupSequential (

kMax = NA_integer_,

alpha = NA_real_,

beta = NA_real_,

sided = 1L,

informationRates = NA_real_,

futilityBounds = NA_real_,

typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum”, "asP", "asOF", "askD",
"asHSD", "asUser"”, "noEarlyEfficacy"”),

deltaWT = NA_real_,

deltaPT1 = NA_real_,

deltaPT@ = NA_real_,

optimizationCriterion = c("”ASNH1"”, "ASNIFH1", "ASNsum"),

gammaA = NA_real_,

typeBetaSpending = c("none”, "bsP", "bsOF", "bskD", "bsHSD", "bsUser"),

userAlphaSpending = NA_real_,

getDesignGroupSequential 73

userBetaSpending = NA_real_,
efficacyStops = NA,

futilityStops =

NA,

gammaB = NA_real_,
bindingFutility = NA,

directionUpper = NA,
betaAdjustment = NA,
constantBoundsHP = 3,
twoSidedPower = NA,

delayedInformation = NA_real_,

tolerance = 1e-08
)
Arguments

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 2@ for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is @.025. Must be a positive numeric of
length 1.

beta Type Il error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is @.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length

typeOfDesign

deltaWT
deltaPT1
deltaPTo

kMax - 1).

The type of design. Type of design is one of the following: O’Brien & Fleming
("OF "), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum"), O’Brien & Fleming type alpha spending ("asOF"), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("askD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy"”), defaultis "OF".

Delta for Wang & Tsiatis Delta class.
Deltal for Pampallona & Tsiatis class rejecting HO boundaries.

Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.

optimizationCriterion

gammaA

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

Parameter for alpha spending function.

74

getDesignGroupSequential

typeBetaSpending
Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bsKD", "bsHSD", "bsUser", default is "none").

userAlphaSpending
The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: @ <=
alpha_1 <= ... <= alpha_K <= alpha.

userBetaSpending
The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.

efficacyStops Logical vector of length kMax - 1 indicating efficacy stops. Default is NA.
futilityStops Logical vector of length kMax - 1 indicating futility stops. Default is NA.

gammaB Parameter for beta spending function.

bindingFutility
Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

constantBoundsHP
The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to O or the power
should be directed to one part.

delayedInformation
Delay of information for delayed response designs. Can be a numeric value or a
numeric vector of length kMax - 1

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF"”, "asP"”, "askD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1"” minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum”
minimizes the sum of the maximum sample size, the expected sample size under a value midway
HO and H1, and the expected sample size under H1.

getDesignGroupSequential 75

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet () for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignInverseNormal (), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber ()

Examples

Not run:

Calculate two-sided critical values for a four-stage

Wang & Tsiatis design with Delta = 0.25 at level alpha =

getDesignGroupSequential (kMax = 4, alpha = .05, sided = 2,
typeOfDesign = "WT", deltaWT = 0.25)

0.05

Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignGroupSequential(kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "askD", gammaA = 2.5, typeBetaSpending = "bskD",

gammaB = 2.5, bindingFutility = TRUE)

Calculate the Pocock type alpha spending critical values if the first

interim analysis was performed after 40% of the maximum information was observed

and the second after 70% of the maximum information was observed (default alpha = 0.025)
getDesignGroupSequential (informationRates = c(@.4, 0.7), typeOfDesign = "asP")

End(Not run)

76 getDesignInverseNormal

getDesignInverseNormal
Get Design Inverse Normal

Description

Provides adjusted boundaries and defines a group sequential design for its use in the inverse normal
combination test.

Usage

getDesignInverseNormal (

kMax = NA_integer_,

alpha = NA_real_,

beta = NA_real_,

sided = 1L,

informationRates = NA_real_,

futilityBounds = NA_real_,

typeOfDesign = c("OF", "P", "WT", "PT", "HP", "WToptimum”, "asP", "asOF", "askD",
"asHSD", "asUser”, "noEarlyEfficacy"),

deltaWT = NA_real_,

deltaPT1 = NA_real_,

deltaPT@ = NA_real_,

optimizationCriterion = c("”ASNH1"”, "ASNIFH1", "ASNsum"),

gammaA = NA_real_,

typeBetaSpending = c("none”, "bsP", "bsOF", "bskKD", "bsHSD", "bsUser"),

userAlphaSpending = NA_real_,

userBetaSpending = NA_real_,

efficacyStops = NA,

futilityStops = NA,

gammaB = NA_real_,

bindingFutility = NA,

directionUpper = NA,

betaAdjustment = NA,

constantBoundsHP = 3,

twoSidedPower = NA,

tolerance = 1e-08

)
Arguments

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 2@ for group sequential or inverse
normal and 6 for Fisher combination test designs.

alpha The significance level alpha, default is @.025. Must be a positive numeric of

length 1.

getDesignInverseNormal 77

beta Type Il error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is @.20. Must be a
positive numeric of length 1.

sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.

informationRates

The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

futilityBounds The futility bounds, defined on the test statistic z scale (numeric vector of length

typeOfDesign

deltaWT
deltaPT1
deltaPTo

kMax - 1).

The type of design. Type of design is one of the following: O’Brien & Fleming
("OF"), Pocock ("P"), Wang & Tsiatis Delta class ("WT"), Pampallona & Tsiatis
("PT"), Haybittle & Peto ("HP"), Optimum design within Wang & Tsiatis class
("WToptimum™), O’Brien & Fleming type alpha spending ("asOF "), Pocock type
alpha spending ("asP"), Kim & DeMets alpha spending ("askD"), Hwang, Shi
& DeCani alpha spending ("asHSD"), user defined alpha spending ("asUser"),
no early efficacy stop ("noEarlyEfficacy”), defaultis "OF".

Delta for Wang & Tsiatis Delta class.
Deltal for Pampallona & Tsiatis class rejecting HO boundaries.

Delta0 for Pampallona & Tsiatis class rejecting H1 boundaries.

optimizationCriterion

Optimization criterion for optimum design within Wang & Tsiatis class ("ASNH1",
"ASNIFH1", "ASNsum"), default is "ASNH1", see details.

gammaA Parameter for alpha spending function.
typeBetaSpending
Type of beta spending. Type of of beta spending is one of the following: O’Brien
& Fleming type beta spending, Pocock type beta spending, Kim & DeMets
beta spending, Hwang, Shi & DeCani beta spending, user defined beta spending
("bsOF", "bsP", "bskD", "bsHSD", "bsUser", default is "none").
userAlphaSpending
The user defined alpha spending. Numeric vector of length kMax containing the
cumulative alpha-spending (Type I error rate) up to each interim stage: 0 <=
alpha_1<= ... <=alpha_K <= alpha.
userBetaSpending
The user defined beta spending. Vector of length kMax containing the cumulative
beta-spending up to each interim stage.
efficacyStops Logical vector of length kMax - 1 indicating efficacy stops. Default is NA.
futilityStops Logical vector of length kMax - 1 indicating futility stops. Default is NA.
gammaB Parameter for beta spending function.
bindingFutility

Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

78 getDesignInverseNormal

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

betaAdjustment For two-sided beta spending designs, if betaAdjustement = TRUE a linear ad-
justment of the beta spending values is performed if an overlapping of decision
regions for futility stopping at earlier stages occurs, otherwise no adjustment is
performed (default is TRUE).

constantBoundsHP
The constant bounds up to stage kMax - 1 for the Haybittle & Peto design (de-
fault is 3).

twoSidedPower For two-sided testing, if twoSidedPower = TRUE is specified the sample size
calculation is performed by considering both tails of the distribution. Default
is FALSE, i.e., it is assumed that one tail probability is equal to O or the power
should be directed to one part.

tolerance The numerical tolerance, default is 1e-08.

Details

Depending on typeOfDesign some parameters are specified, others not. For example, only if
typeOfDesign "asHSD" is selected, gammaA needs to be specified.

If an alpha spending approach was specified ("asOF", "asP"”, "asKD", "asHSD", or "asUser")
additionally a beta spending function can be specified to produce futility bounds.

For optimum designs, "ASNH1"” minimizes the expected sample size under H1, "ASNIFH1" min-
imizes the sum of the maximum sample and the expected sample size under H1, and "ASNsum”
minimizes the sum of the maximum sample size, the expected sample size under a value midway
HO and H1, and the expected sample size under H1.

Value

Returns a TrialDesign object. The following generics (R generic functions) are available for this
result object:

¢ names () to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,
* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

getDesignSet () for creating a set of designs to compare different designs.

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential (), getGroupSequentialProbabilities(), getPowerAndAverageSampleNumber ()

getDesignSet 79

Examples

Not run:

Calculate two-sided critical values for a four-stage

Wang & Tsiatis design with Delta = 0.25 at level alpha = 0.05

getDesignInverseNormal (kMax = 4, alpha = 0.05, sided = 2,
typeOfDesign = "WT", deltaWT = @.25)

Defines a two-stage design at one-sided alpha = 0.025 with provision of early stopping
if the one-sided p-value exceeds 0.5 at interim and no early stopping for efficacy.

The futility bound is non-binding.

getDesignInverseNormal (kMax = 2, typeOfDesign = "noEarlyEfficacy”, futilityBounds = @)

Calculate one-sided critical values and binding futility bounds for a three-stage
design with alpha- and beta-spending functions according to Kim & DeMets with gamma = 2.5
(planned informationRates as specified, default alpha = 0.025 and beta = 0.2)
getDesignInverseNormal (kMax = 3, informationRates = c(0.3, 0.75, 1),

typeOfDesign = "askD", gammaA = 2.5, typeBetaSpending = "bskD",

gammaB = 2.5, bindingFutility = TRUE)

End(Not run)

getDesignSet Get Design Set

Description

Creates a trial design set object and returns it.

Usage

getDesignSet(...)

Arguments
designs or design and one or more design parameters, e.g., deltaWT = c(0.1,
0.3,0.4).
* design The master design (optional, you need to specify an additional pa-
rameter that shall be varied).
* designs The designs to compare (optional, you need to specify the variable
variedParameters).
Details

Specify a master design and one or more design parameters or a list of designs.

Value

Returns a TrialDesignSet object. The following generics (R generic functions) are available for
this result object:

* names to obtain the field names,

80 getDesignSet

* length to obtain the number of design,

* print() to print the object,

* summary () to display a summary of the object,

e plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Example 1
design <- getDesignGroupSequential(
alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1
)
designSet <- getDesignSet()
designSet$add(design = design, deltaWT = c(0.3, 0.4))
if (require(ggplot2)) plot(designSet, type = 1)

Example 2 (shorter script)
design <- getDesignGroupSequential(
alpha = 0.05, kMax = 6,
sided = 2, typeOfDesign = "WT", deltaWT = 0.1
)
designSet <- getDesignSet(design = design, deltaWT = c(0.3, 0.4))
if (require(ggplot2)) plot(designSet, type = 1)

Example 3 (use of designs instead of design)
d1 <- getDesignGroupSequential(
alpha = 0.05, kMax = 2,
sided = 1, beta = 0.2, typeOfDesign = "asHSD",
gammaA = 0.5, typeBetaSpending = "bsHSD”, gammaB = 0.5
)
d2 <- getDesignGroupSequential(
alpha = 0.05, kMax = 4,
sided = 1, beta = 0.2, typeOfDesign = "asP",
typeBetaSpending = "bsP”
)
designSet <- getDesignSet(
designs = c(d1, d2),
variedParameters = c("typeOfDesign”, "kMax")
)
if (require(ggplot2)) plot(designSet, type = 8, nMax = 20)

End(Not run)

getEventProbabilities 81

getEventProbabilities Get Event Probabilities

Description

Returns the event probabilities for specified parameters at given time vector.

Usage

getEventProbabilities(
time,
accrualTime = c(0, 12),
accruallntensity = 0.1,
accruallntensityType = c("auto”, "absolute”, "relative"),
kappa = 1,
piecewiseSurvivalTime = NA_real_,
lambda2 = NA_real_,
lambdal = NA_real_,
allocationRatioPlanned = 1,
hazardRatio = NA_real_,
dropoutRatel = 0,
dropoutRate2 = 0,
dropoutTime = 12,
maxNumberOfSubjects = NA_real_

)
Arguments

time A numeric vector with time values.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, defaultis c(@, 12) (for details
see getAccrualTime()).

accruallntensity

A numeric vector of accrual intensities, default is the relative intensity @. 1 (for
details see getAccrualTime()).

accruallntensityType
A character value specifying the accrual intensity input type. Must be one of

"auto”, "absolute”, or "relative"”; default is "auto”, i.e., if all values are <
1 the type is "relative”, otherwise it is "absolute”.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale =1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate’.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiselLambda
=0.01, kappa=4.2) and pweibull(q =130, shape=4.2, scale=1/0.01)
provide the same result.

82 getEventProbabilities

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

lambda1 The assumed hazard rate in the treatment group, there is no default. lambda
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = @ is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.
maxNumberOfSubjects

If maxNumberOfSubjects > 0 is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

The function computes the overall event probabilities in a two treatment groups design. For details
of the parameters see getSampleSizeSurvival().

Value

Returns a EventProbabilities object. The following generics (R generic functions) are available
for this result object:

¢ names() to obtain the field names,

* print() to print the object,

e summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

getFinalConfidencelnterval 83

Examples

Not run:
Calculate event probabilities for staggered subjects' entry, piecewisely defined
survival time and hazards, and plot it.
timeVector <- seq(@, 100, 1)
y <- getEventProbabilities(timeVector, accrualTime = c(0, 20, 60),
accruallntensity = c(5, 20),
piecewiseSurvivalTime = c(@, 20, 890),
lambda2 = c(0.02, 0.06, 0.1),
hazardRatio = 2
)
plot(timeVector, y$cumulativeEventProbabilities, type = '1")

End(Not run)

getFinalConfidenceInterval
Get Final Confidence Interval

Description

Returns the final confidence interval for the parameter of interest. It is based on the prototype case,
i.e., the test for testing a mean for normally distributed variables.

Usage

getFinalConfidencelnterval(
design,
datalnput,

directionUpper = NA,
thetaH® = NA_real_,
tolerance = 1e-06,

stage = NA_integer_

)
Arguments
design The trial design.
datalnput The summary data used for calculating the test results. This is either an element

of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset (). For more information see getDataset ().

Further (optional) arguments to be passed:

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing
rates and the hazard ratio. For testing rates, if normalApproximation =
FALSE is specified, the binomial test (one sample) or the exact test of Fisher
(two samples) is used for calculating the p-values. In the survival setting,
normalApproximation = FALSE has no effect.

84

directionUpper

thetaHo

tolerance

stage

Details

getFinalConfidencelnterval

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

stdErrorEstimate Estimate of standard error for calculation of final confi-
dence intervals for comparing rates in two treatment groups, default is
"pooled”.

Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is, in
case of (one-sided) testing of
* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.
* rates: a value != 0 (or a value !=1 for testing the risk ratio pi1 / pi2) can
be specified.
* survival data: a bound for testing HO: hazard ratio = thetaH@ !=1 can
be specified.
* count data: a bound for testing HO: lambdal / lambda2 = thetaH®o !=1
can be specified.

For testing a rate in one sample, a value thetaH® in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

The numerical tolerance, default is Te-@6. Must be a positive numeric of length
1.

The stage number (optional). Default: total number of existing stages in the data
input.

Depending on design and dataInput the final confidence interval and median unbiased estimate
that is based on the stage-wise ordering of the sample space will be calculated and returned. Addi-
tionally, a non-standardized ("general") version is provided, the estimated standard deviation must
be used to obtain the confidence interval for the parameter of interest.

For the inverse normal combination test design with more than two stages, a warning informs that

the validity of the
performed.

Value

confidence interval is theoretically shown only if no sample size change was

Returns a 1ist containing

e finalStage,

e medianUnbiased,

e finalConfidencelnterval,

e medianUnbiasedGeneral, and

e finalConfidenceIntervalGeneral.

getFinalPValue 85

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalPower (), getConditionalRejectionProbabilities(), getFinalPValue(), getRepeatedConfide
getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(
n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)
)
getFinalConfidencelnterval (design, datalnput = data)

End(Not run)

getFinalPValue Get Final P Value

Description

Returns the final p-value for given stage results.

Usage
getFinalPValue(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

Only available for backward compatibility.

Details

The calculation of the final p-value is based on the stage-wise ordering of the sample space. This
enables the calculation for both the non-adaptive and the adaptive case. For Fisher’s combination
test, it is available for kMax = 2 only.

Value

Returns a 1ist containing

* finalStage,
e pFinal.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidencelnterval(),
getRepeatedConfidencelntervals(), getRepeatedPValues(), getStageResults(), getTestActions()

86 getGroupSequentialProbabilities

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),

means = c(50, 51),

stDevs = c(130, 140)

)
getFinalPValue(getStageResults(design, datalnput = data))

End(Not run)

getGroupSequentialProbabilities
Get Group Sequential Probabilities

Description

Calculates probabilities in the group sequential setting.

Usage

getGroupSequentialProbabilities(decisionMatrix, informationRates)

Arguments

decisionMatrix A matrix with either 2 or 4 rows and kMax = length(informationRates) columns,
see details.

informationRates
The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1))/ t_1) (see the documentation).

Details

Given a sequence of information rates (fixing the correlation structure), and decisionMatrix with
either 2 or 4 rows and kMax = length(informationRates) columns, this function calculates a proba-
bility matrix containing, for two rows, the probabilities:

PZ_ 1<1.1),PQ_1<Z 1<u_1,Z 2<1_2),..,P(_kMax-1 <Z_kMax-1 <u_kMax-1,Z_kMax <
1_1_kMax)

PZ_1<u_l1),PA_1<Z_1<u_l,Z 2<u_2),.., P01 _kMax-1 <Z_kMax-1 <u_kMax-1, Z_kMax
< u_l_kMax)

PZ_1<Inf),PA_1<Z_1<u_1,Z_2 < Inf),...,, P(_kMax-1 < Z_kMax-1 < u_kMax-1, Z_kMax <

Inf)

with continuation matrix
1_1,....1_kMax
u_l,...,u_kMax

That is, the output matrix of the function provides per stage (column) the cumulative probabilities
for values specified in decisionMatrix and Inf, and reaching the stage, i.e., the test statistics is in the

getGroupSequentialProbabilities 87

continuation region for the preceding stages. For 4 rows, the continuation region contains of two
regions and the probability matrix is obtained analogously (cf., Wassmer and Brannath, 2016).

Value

Returns a numeric matrix containing the probabilities described in the details section.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential (), getDesignInverseNormal (), getPowerAndAverageSampleNumber ()

Examples

Not run:
Calculate Type I error rates in the two-sided group sequential setting when
performing kMax stages with constant critical boundaries at level alpha:
alpha <- 0.05
kMax <- 10
decisionMatrix <- matrix(c(
rep(-gnorm(1 - alpha / 2), kMax),
rep(gnorm(1 - alpha / 2), kMax)
), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)
cumsum(probs[3, 1 - probs[2, 1 + probs[1, 1)

Do the same for a one-sided design without futility boundaries:
decisionMatrix <- matrix(c(

rep(-Inf, kMax),

rep(gnorm(1 - alpha), kMax)
), nrow = 2, byrow = TRUE)
informationRates <- (1:kMax) / kMax
probs <- getGroupSequentialProbabilities(decisionMatrix, informationRates)
cumsum(probs[3, 1 - probs[2, 1)

Check that two-sided Pampallona and Tsiatis boundaries with binding
futility bounds obtain Type I error probabilities equal to alpha:
x <- getDesignGroupSequential(
alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",
deltaPTO = @, deltaPT1 = 0.4, sided = 2, bindingFutility = TRUE
)
dm <- matrix(c(
-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, @, x$criticalValues
), nrow = 4, byrow = TRUE)
dm[is.na(dm)] <- @
probs <- getGroupSequentialProbabilities(
decisionMatrix = dm, informationRates = (1:3) / 3
)
sum(probs[5,] - probs[4, 1 + probs[1, 1)

Check the Type I error rate decrease when using non-binding futility bounds:
x <- getDesignGroupSequential(

alpha = 0.05, beta = 0.1, kMax = 3, typeOfDesign = "PT",

deltaPT@ = @, deltaPT1 = 0.4, sided = 2, bindingFutility = FALSE

88 getLambdaStepFunction

dm <- matrix(c(
-x$criticalValues, -x$futilityBounds, 0,
x$futilityBounds, @, x$criticalValues

), nrow = 4, byrow = TRUE)

dm[is.na(dm)] <- @

probs <- getGroupSequentialProbabilities(
decisionMatrix = dm, informationRates = (1:3) / 3

)

sum(probs[5, 1 - probs[4, 1 + probs[1, 1)

End(Not run)

getlLambdaStepFunction Get Lambda Step Function

Description

Calculates the lambda step values for a given time vector.

Usage

getLambdaStepFunction(timeValues, ..., piecewiseSurvivalTime, piecewiselLambda)
Arguments

timeValues A numeric vector that specifies the time values for which the lambda step values

shall be calculated.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

piecewiseSurvivalTime
A numeric vector that specifies the time intervals for the piecewise definition of
the exponential survival time cumulative distribution function (see details).

piecewiselambda
A numeric vector that specifies the assumed hazard rate in the treatment group.

Details

The first element of the vector piecewiseSurvivalTime must be equal to @. This function is used
for plotting of sample size survival results (cf., plot, type = 13 and type = 14).

Value

A numeric vector containing the lambda step values that corresponds to the specified time values.

getLogLevel 89

getlLoglevel Get Log Level

Description

Returns the current rpact log level.

Usage
getLoglevel ()

Details

This function gets the log level of the rpact internal log message system.

Value

Returns a character of length 1 specifying the current log level.

See Also

* setlLoglevel() for setting the log level,
* resetlLoglevel () for resetting the log level to default.

Examples

show current log level
getLoglevel ()

getLongFormat Get Long Format

Description

Returns the specified dataset as a data. frame in so-called long format.

Usage

getLongFormat (datalnput)

Details

In the long format (narrow, stacked), the data are presented with one column containing all the
values and another column listing the context of the value, i.e., the data for the different groups are
in one column and the dataset contains an additional "group" column.

Value

A data. frame will be returned.

90 getNumberOfSubjects

See Also

getWideFormat() for returning the dataset as a data. frame in wide format.

getNumberOfSubjects Get Number Of Subjects

Description

Returns the number of recruited subjects at given time vector.

Usage

getNumberOfSubjects(
time,
accrualTime = c(0, 12),
accruallntensity = 0.1,

accruallntensityType = c("auto”, "absolute”, "relative"),
maxNumberOfSubjects = NA_real_
)
Arguments

time A numeric vector with time values.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

accrualTime The assumed accrual time intervals for the study, defaultis c(@, 12) (for details
see getAccrualTime()).

accruallntensity
A numeric vector of accrual intensities, default is the relative intensity @.1 (for
details see getAccrualTime()).

accruallntensityType
A character value specifying the accrual intensity input type. Must be one of
"auto”, "absolute”, or "relative"”; default is "auto”, i.e., if all values are <
1 the type is "relative”, otherwise it is "absolute”.

maxNumberOfSubjects
If maxNumber0OfSubjects > @ is specified, the end of accrual at specified accrualIntensity
for the specified number of subjects is determined or accrualIntensity is cal-
culated at fixed end of accrual.

Details

Calculate number of subjects over time range at given accrual time vector and accrual intensity.
Intensity can either be defined in absolute or relative terms (for the latter, maxNumberOfSubjects
needs to be defined)

The function is used by getSampleSizeSurvival().

getObservedInformationRates 91

Value

Returns a NumberOfSubjects object. The following generics (R generic functions) are available
for this result object:

¢ names() to obtain the field names,

e print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

e as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

AccrualTime for defining the accrual time.

Examples

Not run:
getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(@, 20, 60),
accruallntensity = c(5, 20))

getNumberOfSubjects(time = seq(10, 70, 10), accrualTime = c(@, 20, 60),
accruallntensity = c(0.1, 0.4), maxNumberOfSubjects = 900)

End(Not run)

getObservedInformationRates
Get Observed Information Rates

Description

Recalculates the observed information rates from the specified dataset.

Usage

getObservedInformationRates(
datalnput,
maxInformation = NULL,
informationEpsilon = NULL,
stage = NA_integer_

92 getObservedInformationRates

Arguments

datalnput The dataset for which the information rates shall be recalculated.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

maxInformation Positive value specifying the maximum information.

informationEpsilon
Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, defaultis 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

stage The stage number (optional). Default: total number of existing stages in the data
input.

Details

For means and rates the maximum information is the maximum number of subjects or the relative
proportion if informationEpsilon < 1; for survival data it is the maximum number of events or
the relative proportion if informationEpsilon < 1.

Value

Returns a list that summarizes the observed information rates.

See Also

* getAnalysisResults() for using getObservedInformationRates() implicit,

* www.rpact.org/vignettes/planning/rpact_boundary_update_example

Examples

Not run:
Absolute information epsilon:
decision rule 45 >= 46 - 1, i.e., under-running
data <- getDataset(
overallN = c(22, 45),
overallEvents = c(11, 28)
)
getObservedInformationRates(data,
maxInformation = 46, informationEpsilon = 1

)

Relative information epsilon:
last information rate = 45/46 = 0.9783,
is > 1 - 0.03 = 0.97, i.e., under-running
data <- getDataset(
overallN = c(22, 45),
overallEvents = c(11, 28)
)
getObservedInformationRates(data,
maxInformation = 46, informationEpsilon = 0.03

https://www.rpact.org/vignettes/planning/rpact_boundary_update_example/

getOutputFormat 93

)

End(Not run)

getOutputFormat Get Output Format

Description

With this function the format of the standard outputs of all rpact objects can be shown and written
to a file.

Usage

getOutputFormat(
parameterName = NA_character_,

file = NA_character_,
default = FALSE,
fields = TRUE

Arguments

parameterName The name of the parameter whose output format shall be returned. Leave the
default NA_character_ if the output format of all parameters shall be returned.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

file An optional file name where to write the output formats (see Details for more
information).
default If TRUE the default output format of the specified parameter(s) will be returned,
default is FALSE.
fields If TRUE the names of all affected object fields will be displayed, default is TRUE.
Details

Output formats can be written to a text file by specifying a file. See setOutputFormat()() to
learn how to read a formerly saved file.

Note that the parameterName must not match exactly, e.g., for p-values the following parameter
names will be recognized amongst others:

p value

p.values

p-value

pValue

A

rpact.output.format.p.value

94 getParameterCaption

Value

A named list of output formats.

See Also

Other output formats: setOutputFormat()

Examples

Not run:
show output format of p values
getOutputFormat("p.value")

set new p value output format
setOutputFormat("p.value”, digits = 5, nsmall = 5)

show sample sizes as smallest integers not less than the not rounded values
setOutputFormat("sample size"”, digits = @, nsmall = @, roundFunction = "ceiling")
getSampleSizeMeans()

show sample sizes as smallest integers not greater than the not rounded values
setOutputFormat(”sample size"”, digits = @, nsmall = @, roundFunction = "floor")
getSampleSizeMeans()

set new sample size output format without round function
setOutputFormat("sample size"”, digits = 2, nsmall = 2)
getSampleSizeMeans()

reset sample size output format to default
setOutputFormat ("sample size")
getSampleSizeMeans()

getOutputFormat ("sample size")

End(Not run)

getParameterCaption Get Parameter Caption

Description

Returns the parameter caption for a given object and parameter name.

Usage

getParameterCaption(obj, var)

Arguments

obj The rpact result object.

var The variable/parameter name.

getParameterName 95

Details
This function identifies and returns the caption that will be used in print outputs of an rpact result
object.

Value

Returns a character of specifying the corresponding caption of a given parameter name. Returns
NULL if the specified parameterName does not exist.

See Also

getParameterName () for getting the parameter name for a given caption.

Examples

Not run:
getParameterCaption(getDesignInverseNormal(), "kMax")

End(Not run)

getParameterName Get Parameter Name

Description

Returns the parameter name for a given object and parameter caption.

Usage

getParameterName(obj, parameterCaption)

Arguments
obj The rpact result object.
parameterCaption
The parameter caption.
Details

This function identifies and returns the parameter name for a given caption that will be used in print
outputs of an rpact result object.

Value

Returns a character of specifying the corresponding name of a given parameter caption. Returns
NULL if the specified parameterCaption does not exist.

See Also

getParameterCaption() for getting the parameter caption for a given name.

96 getParameterType

Examples

Not run:
getParameterName(getDesignInverseNormal(), "Maximum number of stages")

End(Not run)

getParameterType Get Parameter Type

Description

Returns the parameter type for a given object and parameter name.

Usage

getParameterType(obj, var)

Arguments

obj The rpact result object.

var The variable/parameter name.

Details

This function identifies and returns the type that will be used in print outputs of an rpact result
object.

Value

Returns a character of specifying the corresponding type of a given parameter name. Returns
NULL if the specified parameterName does not exist.

See Also
getParameterName () for getting the parameter name for a given caption. getParameterCaption()

for getting the parameter caption for a given name.

Examples

Not run:
getParameterType(getDesignInverseNormal(), "kMax")

End(Not run)

getPerformanceScore 97

getPerformanceScore Get Performance Score

Description

Calculates the conditional performance score, its sub-scores and components according to (Her-
rmann et al. (2020), doi:10.1002/sim.8534) and (Bokelmann et al. (2024), doi:10.1186/s12874024-
021504) for a given simulation result from a two-stage design with continuous or binary endpoint.
Larger (sub-)score and component values refer to a better performance.

Usage

getPerformanceScore(simulationResult)

Arguments
simulationResult
A simulation result.
Details

The conditional performance score consists of two sub-scores, one for the sample size (subscore-
SampleSize) and one for the conditional power (subscoreConditionalPower). Each of those are
composed of a location (locationSampleSize, locationConditionalPower) and variation component
(variationSampleSize, variationConditionalPower). The term conditional refers to an evaluation
perspective where the interim results suggest a trial continuation with a second stage. The score can
take values between 0 and 1. More details on the performance score can be found in Herrmann et
al. (2020), doi:10.1002/sim.8534 and Bokelmann et al. (2024) doi:10.1186/s12874024021504.

Author(s)

Stephen Schueuerhuis

Examples

Not run:

Example from Table 3 in "A new conditional performance score for

the evaluation of adaptive group sequential designs with samplesize
recalculation from Herrmann et al 2023", p. 2097 for

Observed Conditional Power approach and Delta = 0.5

Create two-stage Pocock design with binding futility boundary at @
design <- getDesignGroupSequential(

kMax = 2, typeOfDesign = "P",

futilityBounds = @, bindingFutility = TRUE)

Initialize sample sizes and effect;

Sample sizes are referring to overall stage-wise sample sizes
nl <- 100

n2 <- 100

nMax <- n1 + n2

alternative <- 0.5

https://doi.org/10.1002/sim.8534
https://doi.org/10.1186/s12874-024-02150-4
https://doi.org/10.1186/s12874-024-02150-4
https://doi.org/10.1002/sim.8534
https://doi.org/10.1186/s12874-024-02150-4

98

getPiecewiseSurvivalTime

Perform Simulation; nMax * 1.5 defines the maximum
sample size for the additional stage
simulationResult <- getSimulationMeans(

)

design = design,

normalApproximation = TRUE,

thetaHo = 0,

alternative = alternative,

plannedSubjects = c(n1, nMax),
minNumberOfSubjectsPerStage = c(NA_real_, 1),
maxNumberOfSubjectsPerStage = c(NA_real_, nMax * 1.5),
conditionalPower = 0.8,

directionUpper = TRUE,

maxNumberOfIterations = 1e05,

seed = 140

Calculate performance score
getPerformanceScore(simulationResult)

End(Not run)

getPiecewiseSurvivalTime

Get Piecewise Survival Time

Description

Returns a PiecewiseSurvivalTime object that contains the all relevant parameters of an exponen-
tial survival time cumulative distribution function. Use names to obtain the field names.

Usage

getPiecewiseSurvivalTime(

piecewiseSurvivalTime = NA_real_,

lambda1 NA_real_,

lambda2 = NA_real_,
hazardRatio = NA_real_,

pil = NA_real_,

pi2 = NA_real_,

median1 = NA_real_,

median2 = NA_real_,

eventTime = 12,

kappa = 1,
delayedResponseAllowed = FALSE

Arguments

piecewiseSurvivalTime

A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function (see details).

getPiecewiseSurvivalTime 99

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambdal The assumed hazard rate in the treatment group, there is no default. lambda1l
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

pil A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(@.2, 0.5, @.1) (power calculations and simulations) or
seq(0@.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is . 2.

mediani The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

eventTime The assumed time under which the event rates are calculated, default is 12.

kappa A numeric value > 0. A kappa != 1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull (t, shape = kappa, scale =1 / lambda) of
the stats package, i.e., the scale parameter is 1 / "hazard rate’.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiselLambda
=0.01, kappa =4.2) and pweibull(q =130, shape=4.2, scale=1/0.01)
provide the same result.

delayedResponseAllowed
If TRUE, delayed response is allowed; otherwise it will be validated that the
response is not delayed, default is FALSE.

Value

Returns a PiecewiseSurvivalTime object. The following generics (R generic functions) are avail-
able for this result object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

100 getPiecewiseSurvivalTime

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to @. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
getPiecewiseSurvivalTime(lambda2 = .5, hazardRatio = 0.8)

getPiecewiseSurvivalTime(lambda2 = @.5, lambdal = 0.4)

getPiecewiseSurvivalTime(pi2 = 0.5, hazardRatio = 0.8)
getPiecewiseSurvivalTime(pi2 = 0.5, pil = 0.4)
getPiecewiseSurvivalTime(pil = 0.3)

getPiecewiseSurvivalTime(hazardRatio = c(0.6, ©0.8), lambda2 = 0.4)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015), hazardRatio = 0.8)

getPiecewiseSurvivalTime(piecewiseSurvivalTime = c(0, 6, 9),
lambda2 = c(0.025, 0.04, 0.015),
lambdal = c(0.025, 0.04, 0.015) * 0.8)

pwst <- getPiecewiseSurvivalTime(list(

"9 - <6" = 0.025,
"6 - <9" = 0.04,
"9 - <15" = 0.015,

"15 - <21" = 9.01,
">=21" 0.007), hazardRatio = 0.75)
pwst

The object created by getPiecewiseSurvivalTime() can be used directly in
getSampleSizeSurvival():
getSampleSizeSurvival(piecewiseSurvivalTime = pwst)

The object created by getPiecewiseSurvivalTime() can be used directly in

getPowerSurvival():

getPowerSurvival (piecewiseSurvivalTime = pwst, directionUpper = FALSE,
maxNumberOfEvents = 40, maxNumberOfSubjects = 100)

The object created by getPiecewiseSurvivalTime() can be used directly in
getSimulationSurvival():
getSimulationSurvival(piecewiseSurvivalTime = pwst, directionUpper = FALSE,

getPlotSettings 101

plannedEvents = 40, maxNumberOfSubjects = 100)

End(Not run)

getPlotSettings Get Plot Settings

Description

Returns a plot settings object.

Usage

getPlotSettings(
lineSize = 0.8,
pointSize = 3,
pointColor = NA_character_,
mainTitleFontSize = 14,
axesTextFontSize = 10,
legendFontSize = 11,
scalingFactor = 1

)
Arguments
lineSize The line size, defaultis 0. 8.
pointSize The point size, default is 3.
pointColor The point color (character), default is NA_character_.
mainTitleFontSize
The main title font size, default is 14.
axesTextFontSize

The axes text font size, default is 10.
legendFontSize The legend font size, default is 11.

scalingFactor The scaling factor, default is 1.

Details

Returns an object of class PlotSettings that collects typical plot settings.

102 getPowerAndAverageSampleNumber

getPowerAndAverageSampleNumber
Get Power And Average Sample Number

Description

Returns the power and average sample number of the specified design.

Usage
getPowerAndAverageSampleNumber (design, theta = seq(-1, 1, 0.02), nMax = 100)

Arguments
design The trial design.
theta A vector of standardized effect sizes (theta values), default is a sequence from
-1to 1.
nMax The maximum sample size. Must be a positive integer of length 1.
Details

This function returns the power and average sample number (ASN) of the specified design for
the prototype case which is testing HO: mu = muO in a one-sample design. theta represents the
standardized effect (mu - mu@) / sigma and power and ASN is calculated for maximum sample
size nMax. For other designs than the one-sample test of a mean the standardized effect needs to be
adjusted accordingly.

Value

Returns a PowerAndAverageSampleNumberResult object. The following generics (R generic func-
tions) are available for this result object:

e names () to obtain the field names,

e print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other design functions: getDesignCharacteristics(), getDesignConditionalDunnett(), getDesignFisher(),
getDesignGroupSequential(), getDesignInverseNormal(), getGroupSequentialProbabilities()

getPowerCounts 103

Examples

Not run:
Calculate power, stopping probabilities, and expected sample
size for the default design with specified theta and nMax
getPowerAndAverageSampleNumber (

getDesignGroupSequential(),

theta = seq(-1, 1, 0.5), nMax = 100)

End(Not run)

getPowerCounts Get Power Counts

Description

Returns the power, stopping probabilities, and expected sample size for testing mean rates for neg-
ative binomial distributed event numbers in two samples at given sample sizes.

Usage

getPowerCounts(
design = NULL,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
lambdal = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
thetaHo = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
allocationRatioPlanned = NA_real_

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

104 getPowerCounts

maxNumberOfSubjects
maxNumberOfSubjects > @ needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

lambda1l A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda?2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambdal/lambda2
of a homogeneous Poisson process, there is no default.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH@ is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: avalue != 0 (or a value !=1 for testing the risk ratio pi1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaH®@ !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaH®o !=1
can be specified.

For testing a rate in one sample, a value thetaH® in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime
If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accruallntensity

If specified, the assumed accrual intensities for the study, there is no default.

followUpTime If specified, the assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

getPowerCounts 105

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size for testing the ratio of two mean rates of negative binomial distributed event numbers in two
samples at given maximum sample size and effect. The power calculation is performed either for
a fixed exposure time or a variable exposure time with fixed follow-up where the information over
the stages is calculated according to the specified information rate in the design. Additionally, an
allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups. A null hypothesis value thetaH® can also be specified.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

* names() to obtain the field names,

* print() to print the object,

e summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerMeans(), getPowerRates(), getPowerSurvival()

Examples
Not run:
Fixed sample size trial where a therapy is assumed to decrease the
exacerbation rate from 1.4 to 1.05 (25% decrease) within an
observation period of 1 year, i.e., each subject has a equal
follow-up of 1 year.
Calculate power at significance level 0.025 at given sample size = 180
for a range of lambdal values if the overdispersion is assumed to be
equal to 0.5, is obtained by

getPowerCounts(alpha = 0.025, lambdal = seq(1, 1.4, 0.05), lambda2 = 1.4,
maxNumberOfSubjects = 180, overdispersion = 0.5, fixedExposureTime = 1)

Group sequential alpha and beta spending function design with 0'Brien and
Fleming type boundaries: Power and test characteristics for N = 286,
under the assumption of a fixed exposure time, and for a range of
lambdal values:
getPowerCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2,

typeOfDesign = "asOF", typeBetaSpending = "bsOF"),

106 getPowerMeans

lambdal = seq(@.17, 0.23, 0.01), lambda2 = 0.3,
directionUpper = FALSE, overdispersion = 1, maxNumberOfSubjects = 286,
fixedExposureTime = 12, accrualTime = 6)

Group sequential design alpha spending function design with O'Brien and
Fleming type boundaries: Power and test characteristics for N = 1976,
under variable exposure time with uniform recruitment over 1.25 months,
study time (accrual + followup) = 4 (lambdal, lambda2, and overdispersion
as specified, no futility stopping):
getPowerCounts(design = getDesignGroupSequential(

kMax = 3, alpha = 0.025, beta = 0.2, typeOfDesign = "asOF"),
lambdal = seq(@.08, 0.09, 0.0025), lambda2 = 0.125,
overdispersion = 5, directionUpper = FALSE, maxNumberOfSubjects = 1976,
followUpTime = 2.75, accrualTime = 1.25)

ER T T

End(Not run)

getPowerMeans Get Power Means

Description

Returns the power, stopping probabilities, and expected sample size for testing means in one or two
samples at given maximum sample size.

Usage

getPowerMeans(
design = NULL,
groups = 2L,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaHo = ifelse(meanRatio, 1, 0),
alternative = seq(@, 1, 0.2),
stDev = 1,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

getPowerMeans

107

normalApproximation

meanRatio

thetaHo

alternative

stDev

directionUpper

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

If TRUE, the sample size for one-sided testing of HO: mul / mu2 = thetaH® is
calculated, default is FALSE.

The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaH® !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaH®o !=1
can be specified.

For testing a rate in one sample, a value thetaH® in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(@, 1, @.2) (power calculations) or seq(9. 2,
1, 0.2) (sample size calculations).

The standard deviation under which the sample size or power calculation is per-
formed, default is 1. For two-armed trials, it is allowed to specify the standard
deviations separately, i.e., as vector with two elements. If meanRatio = TRUE is
specified, stDev defines the coefficient of variation sigma / mu2.

Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects

maxNumber0OfSubjects > @ needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

allocationRatioPlanned

Details

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

At given design the function calculates the power, stopping probabilities, and expected sample size
for testing means at given sample size. In a two treatment groups design, additionally, an allocation

108 getPowerMeans

ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two treatment
groups. A null hypothesis value thetaHO != 0 for testing the difference of two means or thetaHo !=
1 for testing the ratio of two means can be specified. For the specified sample size, critical bounds
and stopping for futility bounds are provided at the effect scale (mean, mean difference, or mean
ratio, respectively)

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

e names () to obtain the field names,

e print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerRates(), getPowerSurvival()

Examples
Not run:
Calculate the power, stopping probabilities, and expected sample size
for testing HO: mul - mu2 = @ in a two-armed design against a range of
alternatives H1: mul - m2 = delta, delta = (0, 1, 2, 3, 4, 5),
standard deviation sigma = 8, maximum sample size N = 80 (both treatment
arms), and an allocation ratio n1/n2 = 2. The design is a three stage
0'Brien & Fleming design with non-binding futility bounds (-0.5, 0.5)
for the two interims. The computation takes into account that the t test
is used (normalApproximation = FALSE).

getPowerMeans(getDesignGroupSequential (alpha = 0.025,
sided = 1, futilityBounds = c(-0.5, 0.5)),
groups = 2, alternative = c(0:5), stDev = 8,
normalApproximation = FALSE, maxNumberOfSubjects = 80,
allocationRatioPlanned = 2)

End(Not run)

getPowerRates 109

getPowerRates Get Power Rates

Description

Returns the power, stopping probabilities, and expected sample size for testing rates in one or two
samples at given maximum sample size.

Usage

getPowerRates(
design = NULL,
groups = 2L,
riskRatio = FALSE,
thetaHo = ifelse(riskRatio, 1, 0),
pil = seq(@.2, 0.5, 0.1),
pi2 = 0.2,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
allocationRatioPlanned = NA_real_

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

riskRatio If TRUE, the power for one-sided testing of HO: pi1 / pi2 = thetaH®@ is calcu-
lated, default is FALSE.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH@ is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.
* rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.
* survival data: a bound for testing HO: hazard ratio = thetaH®@ !=1 can
be specified.
e count data: a bound for testing HO: lambdal / lambda2 = thetaHe !=1
can be specified.
For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

110 getPowerRates

pil A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(@.2, 0.5, 0.1)
(power calculations and simulations) or seq(@.4, .6, @.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is 0. 2.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

maxNumberOfSubjects
maxNumberOfSubjects > @ needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

Details

At given design the function calculates the power, stopping probabilities, and expected sample size
for testing rates at given maximum sample size. The sample sizes over the stages are calculated
according to the specified information rate in the design. In a two treatment groups design, addi-
tionally, an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects
in the two treatment groups. If a null hypothesis value thetaHO != 0 for testing the difference of
two rates or thetaHo !=1 for testing the risk ratio is specified, the formulas according to Farring-
ton & Manning (Statistics in Medicine, 1990) are used (only one-sided testing). Critical bounds
and stopping for futility bounds are provided at the effect scale (rate, rate difference, or rate ratio,
respectively). For the two-sample case, the calculation here is performed at fixed pi2 as given as
argument in the function. Note that the power calculation for rates is always based on the normal
approximation.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

¢ names () to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

getPowerSurvival 111

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerMeans(), getPowerSurvival()

Examples
Not run:
Calculate the power, stopping probabilities, and expected sample size in a
two-armed design at given maximum sample size N = 200 in a three-stage
0'Brien & Fleming design with information rate vector (0.2,0.5,1),
non-binding futility boundaries (0,0), i.e., the study stops for futility
if the p-value exceeds 0.5 at interm, and allocation ratio = 2 for a range
of pil values when testing HO: pil - pi2 = -0.1:

getPowerRates(getDesignGroupSequential (informationRates = c(0.2, 0.5, 1),
futilityBounds = c(@, @)), groups = 2, thetaHo = -0.1,
pil = seq(@.3, 0.6, 0.1), directionUpper = FALSE,
pi2 = 0.7, allocationRatioPlanned = 2, maxNumberOfSubjects = 200)

Calculate the power, stopping probabilities, and expected sample size in a single
arm design at given maximum sample size N = 60 in a three-stage two-sided
0'Brien & Fleming design with information rate vector (0.2, 0.5,1)
for a range of pil values when testing HO: pi = 0.3:
getPowerRates(getDesignGroupSequential (informationRates = c(0.2, 0.5,1),
sided = 2), groups = 1, thetaH® = 0.3, pil = seq(@0.3, 0.5, 0.05),
maxNumberOfSubjects = 60)

End(Not run)

getPowerSurvival Get Power Survival

Description

Returns the power, stopping probabilities, and expected sample size for testing the hazard ratio in a
two treatment groups survival design.

Usage

getPowerSurvival(
design = NULL,

typeOfComputation = c("Schoenfeld”, "Freedman", "HsiehFreedman"),
thetaHo = 1,

directionUpper = NA,

pil = NA_real_,

112 getPowerSurvival

pi2 = NA_real_,

lambdal = NA_real_,

lambda2 = NA_real_,

median1 = NA_real_,

median2 = NA_real_,

kappa = 1,

hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = 1,
eventTime = 12,

accrualTime = c(0, 12),
accruallntensity = 0.1,
accrualIntensityType = c("auto”, "absolute”, "relative"),
maxNumberOfSubjects = NA_real_,
maxNumberOfEvents = NA_real_,
dropoutRatel = 0,

dropoutRate2 = 0,

dropoutTime = 12

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

Ensures that all arguments (starting from the "...") are to be named and that a

warning will be displayed if unknown arguments are passed.
typeOfComputation

Three options are available: "Schoenfeld”, "Freedman”, "HsiehFreedman”,

the default is "Schoenfeld”. For details, see Hsieh (Statistics in Medicine,

1992). For non-inferiority testing (i.e., thetaHe != 1), only Schoenfeld’s for-

mula can be used.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be

specified.

* rates: avalue != 0 (or a value !=1 for testing the risk ratio pi1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaHo !=1 can
be specified.

e count data: a bound for testing HO: lambdal / lambda2 = thetaHe !=1
can be specified.

For testing a rate in one sample, a value thetaH® in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

getPowerSurvival 113

pil A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(@.2, 0.5, @.1) (power calculations and simulations) or
seq(0@.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0. 2.
lambda1l The assumed hazard rate in the treatment group, there is no default. lambda1l

can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

mediani The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa !=1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull (t, shape = kappa, scale =1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate’.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiselLambda
=0.01, kappa =4.2) and pweibull(q =130, shape=4.2, scale=1/0.01)
provide the same result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,

not a scalar.
eventTime The assumed time under which the event rates are calculated, default is 12.
accrualTime The assumed accrual time intervals for the study, defaultis c(@, 12) (for details
see getAccrualTime()).
accruallntensity

A numeric vector of accrual intensities, default is the relative intensity @.1 (for
details see getAccrualTime()).

accruallntensityType
A character value specifying the accrual intensity input type. Must be one of

"auto”, "absolute”, or "relative"”; default is "auto”, i.e., if all values are <
1 the type is "relative”, otherwise it is "absolute”.

114 getPowerSurvival

maxNumberOfSubjects
maxNumberOfSubjects > @ needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

maxNumberOfEvents
maxNumberOfEvents > @ is the maximum number of events, it determines the
power of the test and needs to be specified.

dropoutRatel The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is .

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the power, stopping probabilities, and expected sample
size at given number of events and number of subjects. It also calculates the time when the re-
quired events are expected under the given assumptions (exponentially, piecewise exponentially, or
Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to @. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to @ and, additionally, accrualIntensity needs to be specified.

getPowerSurvival 115

accruallntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accruallntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > @ needs to be specified and the end of accrual
is calculated. In that case, accruallntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(@.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = @.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other power functions: getPowerCounts(), getPowerMeans(), getPowerRates()

Examples

Not run:

Fixed sample size with minimum required definitions, pil = c(0.2, 0.3, 0.4, 0.5) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default
getPowerSurvival (maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Four stage O'Brien & Fleming group sequential design with minimum required

definitions, pil = c(0.2, 0.3, 0.4, 0.5) and pi2 = 0.2 at event time 12,

accrual time 12 and follow-up time 6 as default

getPowerSurvival (design = getDesignGroupSequential (kMax = 4),
maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

For fixed sample design, determine necessary accrual time if 200 subjects and
30 subjects per time unit can be recruited
getPowerSurvival (maxNumberOfEvents = 40, accrualTime = c(9@),

accruallntensity = 30, maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units
20 subjects per time unit can be recruited, then 30 subjects per time unit
getPowerSurvival (maxNumberOfEvents = 40, accrualTime = c(0, 6),

accruallntensity = c(20, 30), maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects per
time unit can be recruited, and after 10 time units 30 subjects per time unit

116 getPowerSurvival

getPowerSurvival (maxNumberOfEvents = 40, accrualTime = c(0, 6, 10),
accruallntensity = c(20, 30))

Specify accrual time as a list
at <- list(

"9 - <6" = 20,

"6 - Inf" = 30)
getPowerSurvival (maxNumberOfEvents

40, accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" = 20,

"6 - <=10" = 30)
getPowerSurvival (maxNumberOfEvents = 40, accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time, directionUpper = FALSE
needs to be specified because it should be shown that hazard ratio < 1
getPowerSurvival (design = getDesignGroupSequential(kMax = 2), pil = 0.2, pi2 = 0.3,
eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on event rate at specified event time for the reference group
and hazard ratio, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
getPowerSurvival(design = getDesignGroupSequential (kMax = 2), hazardRatio = 0.5,
pi2 = 0.3, eventTime = 24, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Effect size is based on hazard rate for the reference group and hazard ratio,

directionUpper = FALSE needs to be specified because it should be shown that

hazard ratio < 1

getPowerSurvival (design = getDesignGroupSequential (kMax = 2), hazardRatio = 0.5,
lambda2 = 0.02, maxNumberOfEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE)

Specification of piecewise exponential survival time and hazard ratios
getPowerSurvival (design = getDesignGroupSequential (kMax = 2),

piecewiseSurvivalTime = c(@, 5, 10), lambda2 = c(0.01, 0.02, 0.04),

hazardRatio = c(1.5, 1.8, 2), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as list and hazard ratios

pws <- list(
"9 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)
getPowerSurvival (design = getDesignGroupSequential (kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2),

maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time for both treatment arms
getPowerSurvival(design = getDesignGroupSequential (kMax = 2),

piecewiseSurvivalTime = c(@, 5, 10), lambda2 = c(0.01, .02, 0.04),

lambdal = ¢(0.015,0.03,0.06), maxNumberOfEvents = 40, maxNumberOfSubjects = 200)

Specification of piecewise exponential survival time as a list
pws <- list(

getRawData 117

"9 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getPowerSurvival (design = getDesignGroupSequential (kMax = 2)
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2
maxNumberOfEvents = 4@, maxNumberOfSubjects = 200)

)’

Specify effect size based on median survival times
getPowerSurvival (median1 = 5, median2 = 3,
maxNumberOfEvents = 40, maxNumberOfSubjects = 200, directionUpper = FALSE)

Specify effect size based on median survival times of
Weibull distribtion with kappa = 2
getPowerSurvival(medianl = 5, median2 = 3, kappa = 2,
maxNumberOfEvents = 4@, maxNumberOfSubjects = 200, directionUpper = FALSE)

End(Not run)

getRawData Get Simulation Raw Data for Survival

Description

Returns the raw survival data which was generated for simulation.

Usage
getRawData(x, aggregate = FALSE)

Arguments
X A SimulationResults object created by getSimulationSurvival().
aggregate Logical. If TRUE the raw data will be aggregated similar to the result of getData(),
default is FALSE.
Details

This function works only if getSimulationSurvival() was called with a
maxNumberOfRawDatasetsPerStage > 0 (default is 0).

This function can be used to get the simulated raw data from a simulation results object obtained
by getSimulationSurvival(). Note that getSimulationSurvival() must called before with
maxNumberOfRawDatasetsPerStage > 0. The data frame contains the following columns:
iterationNumber: The number of the simulation iteration.

stopStage: The stage of stopping.

subjectId: The subject id (increasing number 1, 2, 3, ...)

accrualTime: The accrual time, i.e., the time when the subject entered the trial.
treatmentGroup: The treatment group number (1 or 2).

survivalTime: The survival time of the subject.

N ok w D=

dropoutTime: The dropout time of the subject (may be NA).

118

getRepeatedConfidencelntervals

8. lastObservationTime: The specific observation time.

9. timeUnderObservation: The time under observation is defined as follows:

if (event == TRUE) {
timeUnderObservation <- survivalTime
} else if (dropoutEvent == TRUE) {
timeUnderObservation <- dropoutTime
} else {
timeUnderObservation <- lastObservationTime - accrualTime

}

10. event: TRUE if an event occurred; FALSE otherwise.

11. dropoutEvent: TRUE if an dropout event occurred; FALSE otherwise.

Value

Returns a data. frame.

Examples

Not run:

results <- getSimulationSurvival(
pil = seq(@.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 4@, maxNumberOfSubjects = 200,
maxNumberOflterations = 50, maxNumberOfRawDatasetsPerStage = 5

)

rawData <- getRawData(results)

head(rawData)

dim(rawData)

End(Not run)

getRepeatedConfidencelntervals

Get Repeated Confidence Intervals

Description

Calculates and returns the lower and upper limit of the repeated confidence intervals of the trial.

Usage

getRepeatedConfidencelntervals(
design,
datalnput,
directionUpper = NA,
tolerance = 1e-06,
stage = NA_integer_

getRepeatedConfidencelntervals 119

Arguments
design The trial design.
dataInput The summary data used for calculating the test results. This is either an element

of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset (). For more information see getDataset ().

Further arguments to be passed to methods (cf., separate functions in "See Also"
below), e.g.,

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett"”, "Bonferroni”,
"Simes"”, "Sidak"”, and "Hierarchical”, default is "Dunnett"”. Four op-
tions are available in population enrichment designs: "SpiessensDebois”
(one subset only), "Bonferroni”, "Simes"”, and "Sidak", defaultis "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled”, "pairwisePooled”,
and "notPooled”, default is "overallPooled"”. For enrichment designs,
the options are: "pooled”, "pooledFromFull” (one subset only), and "notPooled”,
default is "pooled”.

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

tolerance The numerical tolerance, default is Te-@6. Must be a positive numeric of length
L.
stage The stage number (optional). Default: total number of existing stages in the data
input.
Details

The repeated confidence interval at a given stage of the trial contains the parameter values that are
not rejected using the specified sequential design. It can be calculated at each stage of the trial and
can thus be used as a monitoring tool.

The repeated confidence intervals are provided up to the specified stage.

120 getRepeatedP Values

Value

Returns a matrix with 2 rows and kMax columns containing the lower RCI limits in the first row
and the upper RCI limits in the second row, where each column represents a stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalPower(), getConditionalRejectionProbabilities(), getFinalConfidencelInterval(),
getFinalPValue(), getRepeatedPValues(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),

means c(50, 51),

stDevs = c(130, 140)

)
getRepeatedConfidencelntervals(design, datalnput = data)

End(Not run)

getRepeatedPValues Get Repeated P Values

Description

Calculates the repeated p-values for a given test results.

Usage

getRepeatedPValues(stageResults, ..., tolerance = 1e-06)

Arguments

stageResults The results at given stage, obtained from getStageResults().

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
tolerance The numerical tolerance, default is Te-@6. Must be a positive numeric of length
1.
Details

The repeated p-value at a given stage of the trial is defined as the smallest significance level under
which at given test design the test results obtain rejection of the null hypothesis. It can be calculated
at each stage of the trial and can thus be used as a monitoring tool.

The repeated p-values are provided up to the specified stage.

In multi-arm trials, the repeated p-values are defined separately for each treatment comparison
within the closed testing procedure.

getSampleSizeCounts 121

Value

Returns a numeric vector of length kMax or in case of multi-arm stage results a matrix (each
column represents a stage, each row a comparison) containing the repeated p values.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalPower (), getConditionalRejectionProbabilities(), getFinalConfidencelInterval(),
getFinalPValue(), getRepeatedConfidencelIntervals(), getStageResults(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),

means = c(50, 51),

stDevs = c(130, 140)

)
getRepeatedPValues(getStageResults(design, datalnput = data))

End(Not run)

getSampleSizeCounts Get Sample Size Counts

Description

Returns the sample size for testing the ratio of mean rates of negative binomial distributed event
numbers in two samples at given effect.

Usage

getSampleSizeCounts(
design = NULL,

lambda1 NA_real_,

lambda2 = NA_real_,

lambda = NA_real_,

theta = NA_real_,

thetaHo = 1,

overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accruallntensity = NA_real_,
followUpTime = NA_real_,
maxNumberOfSubjects = NA_integer_,
allocationRatioPlanned = NA_real_

122 getSampleSizeCounts

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

lambda1l A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda?2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambdal/lambda2
of a homogeneous Poisson process, there is no default.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH@ is the non-inferiority bound. That is, in
case of (one-sided) testing of
* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.
* rates: a value != 0 (or a value !=1 for testing the risk ratio pi1 / pi2) can
be specified.
* survival data: a bound for testing HO: hazard ratio = thetaHo !=1 can
be specified.
* count data: a bound for testing HO: lambdal / lambda2 = thetaHo !=1
can be specified.
For testing a rate in one sample, a value thetaH® in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.
overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime
If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accruallntensity

If specified, the assumed accrual intensities for the study, there is no default.

followUpTime If specified, the assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.
maxNumberOfSubjects
maxNumberOfSubjects > @ needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.
allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = @ is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

getSampleSizeCounts 123

Details

At given design the function calculates the information, and stage-wise and maximum sample size
for testing mean rates of negative binomial distributed event numbers in two samples at given effect.
The sample size calculation is performed either for a fixed exposure time or a variable exposure
time with fixed follow-up. For the variable exposure time case, at given maximum sample size the
necessary follow-up time is calculated. The planned calendar time of interim stages is calculated if
an accrual time is defined. Additionally, an allocation ratio = n1 / n2 can be specified where n1 and
n2 are the number of subjects in the two treatment groups. A null hypothesis value thetaH® can
also be specified.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeMeans(), getSampleSizeRates(), getSampleSizeSurvival()

Examples

Not run:
Fixed sample size trial where a therapy is assumed to decrease the
exacerbation rate from 1.4 to 1.05 (25% decrease) within an observation
period of 1 year, i.e., each subject has an equal follow-up of 1 year.
The sample size that yields 90% power at significance level 0.025 for
detecting such a difference, if the overdispersion is assumed to be
equal to 0.5, is obtained by
getSampleSizeCounts(alpha = 0.025, beta = 0.1, lambda2 = 1.4,

theta = 0.75, overdispersion = 0.5, fixedExposureTime = 1)

Noninferiority test with blinded sample size reassessment to reproduce

Table 2 from Friede and Schmidli (2010):

getSampleSizeCounts(alpha = 0.025, beta = 0.2, lambda = 1, theta = 1,
thetaH? = 1.15, overdispersion = 0.4, fixedExposureTime = 1)

Group sequential alpha and beta spending function design with 0'Brien and
Fleming type boundaries: Estimate observation time under uniform

124 getSampleSizeMeans

recruitment of patients over 6 months and a fixed exposure time of 12
months (lambdal, lambda2, and overdispersion as specified):
getSampleSizeCounts(design = getDesignGroupSequential(
kMax = 3, alpha = 0.025, beta = 0.2,
typeOfDesign = "asOF", typeBetaSpending = "bsOF"),
lambdal = 0.2, lambda2 = 0.3, overdispersion =1,
fixedExposureTime = 12, accrualTime = 6)

Group sequential alpha spending function design with 0'Brien and Fleming
type boundaries: Sample size for variable exposure time with uniform
recruitment over 1.25 months and study time (accrual + followup) = 4
(lambdal, lambda2, and overdispersion as specified, no futility stopping):
getSampleSizeCounts(design = getDesignGroupSequential(
kMax = 3, alpha = 0.025, beta = 0.2, typeOfDesign = "asOF"),
lambdal = 0.0875, lambda2 = 0.125, overdispersion = 5,
followUpTime = 2.75, accrualTime = 1.25)

End(Not run)

getSampleSizeMeans Get Sample Size Means

Description

Returns the sample size for testing means in one or two samples.

Usage

getSampleSizeMeans(
design = NULL,
groups = 2L,
normalApproximation = FALSE,
meanRatio = FALSE,
thetaHo = ifelse(meanRatio, 1, @),
alternative = seq(0.2, 1, 0.2),

stDev = 1,
allocationRatioPlanned = NA_real_
)
Arguments
design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

The type of computation of the p-values. If TRUE, the variance is assumed to be
known, default is FALSE, i.e., the calculations are performed with the t distribu-
tion.

getSampleSizeMeans

meanRatio

thetaHo

alternative

stDev

125

If TRUE, the sample size for one-sided testing of HO: mul / mu2 = thetaH® is
calculated, default is FALSE.

The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH@ is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaH® !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaHo !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(@, 1, @.2) (power calculations) or seq(9. 2,
1, 0.2) (sample size calculations).

The standard deviation under which the sample size or power calculation is per-
formed, default is 1. For two-armed trials, it is allowed to specify the standard
deviations separately, i.e., as vector with two elements. If meanRatio = TRUE is
specified, stDev defines the coefficient of variation sigma / mu2.

allocationRatioPlanned

Details

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = @ is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

At given design the function calculates the stage-wise and maximum sample size for testing means.
In a two treatment groups design, additionally, an allocation ratio = n1 / n2 can be specified where
n1 and n2 are the number of subjects in the two treatment groups. A null hypothesis value thetaHO
1= 0 for testing the difference of two means or thetaHO != 1 for testing the ratio of two means can
be specified. Critical bounds and stopping for futility bounds are provided at the effect scale (mean,
mean difference, or mean ratio, respectively) for each sample size calculation separately.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for

this result object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

e as.matrix() to coerce the object to amatrix.

126 getSampleSizeRates

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeRates(), getSampleSizeSurvival()

Examples

Not run:

Calculate sample sizes in a fixed sample size parallel group design

with allocation ratio \code{n1 / n2 = 2} for a range of

alternative values 1, ..., 5 with assumed standard deviation

two-sided alpha = 0.05, power 1 - beta = 90%:

getSampleSizeMeans(alpha = 0.05, beta = 0.1, sided = 2, groups = 2,
alternative = seq(1, 5, 1), stDev = 3.5, allocationRatioPlanned = 2)

3.5;

Calculate sample sizes in a three-stage Pocock paired comparison design testing
HO: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviation = 3.5; one-sided alpha = 0.05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential (typeOfDesign = "P", alpha = 0.05,
sided = 1, beta = 0.1), groups = 1, thetaHo = 2,
alternative = seq(3, 5, 1), stDev = 3.5)

Calculate sample sizes in a three-stage Pocock two-armed design testing
HO: mu = 2 for a range of alternative values 3,4,5 with assumed standard
deviations = 3 and 4, respectively, in the two groups of observations;
one-sided alpha = .05, power 1 - beta = 90%:
getSampleSizeMeans(getDesignGroupSequential (typeOfDesign = "P", alpha = 0.05,
sided = 1, beta = 0.1), groups = 2,
alternative = seq(3, 5, 1), stDev = c(3, 4))

End(Not run)

getSampleSizeRates Get Sample Size Rates

Description

Returns the sample size for testing rates in one or two samples.

Usage

getSampleSizeRates(
design = NULL,
groups = 2L,
normalApproximation = TRUE,

getSampleSizeRates 127

conservative = TRUE,

riskRatio = FALSE,

thetaHo = ifelse(riskRatio, 1, @),
pil = c(0.4, 0.5, 0.6),

pi2 = 0.2,
allocationRatioPlanned = NA_real_
)
Arguments
design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
groups The number of treatment groups (1 or 2), default is 2.
normalApproximation

If FALSE, the sample size for the case of one treatment group is calculated exactly
using the binomial distribution, default is TRUE.

conservative For the case of one treatment group and normalApproximation = FALSE, if
TRUE, the sample size is calculated such that for larger sample size than the
calculated, the power is larger than 1 - beta, for conservative = FALSE, the
minimum sample size, for which power exceeds 1 - beta is calculated, default is

TRUE.

riskRatio If TRUE, the sample size for one-sided testing of HO: pil / pi2 = thetaH® is
calculated, default is FALSE.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

 survival data: a bound for testing HO: hazard ratio = thetaH@ !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaHo !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

pil A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(@.2, 0.5, 0.1)
(power calculations and simulations) or seq(@.4, .6, 0.1) (sample size cal-
culations).

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is @. 2.

128 getSampleSizeRates

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = @ is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

Details

At given design the function calculates the stage-wise and maximum sample size for testing rates.
In a two treatment groups design, additionally, an allocation ratio = n1 / n2 can be specified where
n1 and n2 are the number of subjects in the two treatment groups. If a null hypothesis value thetaHO
1= 0 for testing the difference of two rates or thetaHO != 1 for testing the risk ratio is specified,
the sample size formula according to Farrington & Manning (Statistics in Medicine, 1990) is used.
Critical bounds and stopping for futility bounds are provided at the effect scale (rate, rate difference,
or rate ratio, respectively) for each sample size calculation separately. For the two-sample case, the
calculation here is performed at fixed pi2 as given as argument in the function.

Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

e names () to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeMeans(), getSampleSizeSurvival()

Examples

Not run:

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum

allocation ratios for a range of pil values when testing

HO: pil - pi2 = -0.1 within a two-stage O'Brien & Fleming design;

alpha = 0.05 one-sided, power 1 - beta = 90%:

getSampleSizeRates(getDesignGroupSequential (kMax
beta = 0.1), groups = 2, thetaHo = -0.1, pil
pi2 = 0.4, allocationRatioPlanned = @)

2, alpha = 0.05,
seq(0.4, 0.55, 0.025),

Calculate the stage-wise sample sizes, maximum sample sizes, and the optimum
allocation ratios for a range of pil values when testing
HO: pil / pi2 = 0.80 within a three-stage O'Brien & Fleming design;

getSampleSizeSurvival 129

alpha = 0.025 one-sided, power 1 - beta = 90%:
getSampleSizeRates(getDesignGroupSequential (kMax = 3, alpha = 0.025,
beta = 0.1), groups = 2, riskRatio = TRUE, thetaH0 = 0.80,
pil = seq(@.3, 0.5, 0.025), pi2 = 0.3, allocationRatioPlanned = 0)

End(Not run)

getSampleSizeSurvival Get Sample Size Survival

Description

Returns the sample size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSampleSizeSurvival(
design = NULL,

typeOfComputation = c("Schoenfeld”, "Freedman”, "HsiehFreedman"),
thetaHo = 1,

pil = NA_real_,

pi2 = NA_real_,

lambdal = NA_real_,

lambda2 = NA_real_,

medianl = NA_real_,

median2 = NA_real_,

kappa = 1,

hazardRatio = NA_real_,
piecewiseSurvivalTime = NA_real_,
allocationRatioPlanned = NA_real_,
eventTime = 12,

accrualTime = c(0, 12),
accruallntensity = 0.1,
accruallntensityType = c("auto”, "absolute”, "relative"),
followUpTime = NA_real_,
maxNumberOfSubjects = NA_real_,
dropoutRatel = 0,

dropoutRate2 = 0,

dropoutTime = 12

Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

130 getSampleSizeSurvival

typeOfComputation
Three options are available: "Schoenfeld”, "Freedman”, "HsiehFreedman”,
the default is "Schoenfeld”. For details, see Hsieh (Statistics in Medicine,
1992). For non-inferiority testing (i.e., thetaH® != 1), only Schoenfeld’s for-
mula can be used.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH@ is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaHo !=1 can
be specified.

e count data: a bound for testing HO: lambdal / lambda2 = thetaHe !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

pil A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(@.2, 0.5, 0.1) (power calculations and simulations) or
seq(0@.4, 0.6, 0.1) (sample size calculations).

pi2 A numeric value that represents the assumed event rate in the control group,
default is 0. 2.

lambda1l The assumed hazard rate in the treatment group, there is no default. lambda1
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

lambda?2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

mediani The assumed median survival time in the treatment group, there is no default.

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa !=1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull (t, shape = kappa, scale =1 / lambda) of
the stats package, i.e., the scale parameter is 1 / "hazard rate’.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiselLambda
=0.01, kappa =4.2) and pweibull(q =130, shape=4.2, scale=1/0.01)
provide the same result.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in

both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

getSampleSizeSurvival 131

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = @ is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(@, 12) (for details
see getAccrualTime()).

accruallntensity
A numeric vector of accrual intensities, default is the relative intensity @. 1 (for
details see getAccrualTime()).

accrualIntensityType
A character value specifying the accrual intensity input type. Must be one of
"auto”, "absolute”, or "relative"”; default is "auto”, i.e., if all values are <
1 the type is "relative”, otherwise it is "absolute”.

followUpTime The assumed (additional) follow-up time for the study, default is 6. The total
study duration is accrualTime + followUpTime.

maxNumberOfSubjects
If maxNumberOfSubjects > @ is specified, the follow-up time for the required
number of events is determined.

dropoutRate1 The assumed drop-out rate in the treatment group, default is @.
dropoutRate2 The assumed drop-out rate in the control group, default is @.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

Details

At given design the function calculates the number of events and an estimate for the necessary num-
ber of subjects for testing the hazard ratio in a survival design. It also calculates the time when the
required events are expected under the given assumptions (exponentially, piecewise exponentially,
or Weibull distributed survival times and constant or non-constant piecewise accrual). Additionally,
an allocation ratio = n1 / n2 can be specified where n1 and n2 are the number of subjects in the two
treatment groups.

Optional argument accountForObservationTimes: if accountForObservationTimes = TRUE, the
number of subjects is calculated assuming specific accrual and follow-up time, default is TRUE.

The formula of Kim & Tsiatis (Biometrics, 1990) is used to calculate the expected number of events
under the alternative (see also Lakatos & Lan, Statistics in Medicine, 1992). These formulas are
generalized to piecewise survival times and non-constant piecewise accrual over time.

Optional argument accountForObservationTimes: if accountForObservationTimes = FALSE,
only the event rates are used for the calculation of the maximum number of subjects.
Value

Returns a TrialDesignPlan object. The following generics (R generic functions) are available for
this result object:

132 getSampleSizeSurvival

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to @. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to @ and, additionally, accrualIntensity needs to be specified.
accruallntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > @ needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity = c(@.1, 0.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other sample size functions: getSampleSizeCounts(), getSampleSizeMeans(), getSampleSizeRates()

getSampleSizeSurvival 133

Examples

Not run:

Fixed sample size trial with median survival 20 vs. 30 months in treatment and

reference group, respectively, alpha = 0.05 (two-sided), and power 1 - beta = 90%.

20 subjects will be recruited per month up to 400 subjects, i.e., accrual time

is 20 months.

getSampleSizeSurvival(alpha = .05, sided = 2, beta = 0.1, lambdal = log(2) / 20,
lambda2 = log(2) / 30, accrualTime = c(0,20), accruallntensity = 20)

Fixed sample size with minimum required definitions, pil = c(0.4,0.5,0.6) and
pi2 = 0.2 at event time 12, accrual time 12 and follow-up time 6 as default,
only alpha = 0.01 is specified

getSampleSizeSurvival(alpha = 0.01)

Four stage O'Brien & Fleming group sequential design with minimum required
definitions, pil = c(0.4,0.5,0.6) and pi2 = 0.2 at event time 12,

accrual time 12 and follow-up time 6 as default
getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 4))

For fixed sample design, determine necessary accrual time if 200 subjects and

30 subjects per time unit can be recruited

getSampleSizeSurvival(accrualTime = c(@), accruallntensity = c(30),
maxNumberOfSubjects = 200)

Determine necessary accrual time if 200 subjects and if the first 6 time units

20 subjects per time unit can be recruited, then 30 subjects per time unit

getSampleSizeSurvival(accrualTime = c(@, 6), accruallntensity = c(20, 30),
maxNumberOfSubjects = 200)

Determine maximum number of Subjects if the first 6 time units 20 subjects
per time unit can be recruited, and after 10 time units 30 subjects per time unit
getSampleSizeSurvival(accrualTime = c(@, 6, 10), accruallntensity = c(20, 30))

Specify accrual time as a list
at <- list(
"o - <6” = 20,
"6 - Inf" = 30)
getSampleSizeSurvival(accrualTime = at, maxNumberOfSubjects = 200)

Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(

"0 - <6" 20,

"6 - <=10" = 30)
getSampleSizeSurvival(accrualTime = at)

Specify effect size for a two-stage group design with O'Brien & Fleming boundaries
Effect size is based on event rates at specified event time
needs to be specified because it should be shown that hazard ratio < 1
getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 2),

pil = 0.2, pi2 = 0.3, eventTime = 24)

Effect size is based on event rate at specified event

time for the reference group and hazard ratio

getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 2),
hazardRatio = 0.5, pi2 = 0.3, eventTime = 24)

134 getSimulationCounts

Effect size is based on hazard rate for the reference group and hazard ratio
getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 2),
hazardRatio = 0.5, lambda2 = 0.02)

Specification of piecewise exponential survival time and hazard ratios

getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 2),
piecewiseSurvivalTime = c(@, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time as a list and hazard ratios
pws <- list(

"0 - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specification of piecewise exponential survival time for both treatment arms

getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 2),
piecewiseSurvivalTime = c(@, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambdal = c(0.015, 0.03, 0.06))

Specification of piecewise exponential survival time as a list

pws <- list(
"9 - <5" =120.01,
"5 - <10" = 0.02,
">=10" = 0.04)

getSampleSizeSurvival(design = getDesignGroupSequential (kMax = 2),
piecewiseSurvivalTime = pws, hazardRatio = c(1.5, 1.8, 2))

Specify effect size based on median survival times
getSampleSizeSurvival(medianl = 5, median2 = 3)

Specify effect size based on median survival times of Weibull distribtion with
kappa = 2
getSampleSizeSurvival(medianl = 5, median2 = 3, kappa = 2)

Identify minimal and maximal required subjects to

reach the required events in spite of dropouts

getSampleSizeSurvival(accrualTime = c(@, 18), accruallntensity = c(20, 30),
lambda2 = 0.4, lambdal = 0.3, followUpTime = Inf, dropoutRatel = 0.001,
dropoutRate2 = 0.005)

getSampleSizeSurvival(accrualTime = c(@, 18), accruallntensity = c(20, 30),
lambda2 = 0.4, lambdal = 0.3, followUpTime = @, dropoutRatel = 0.001,
dropoutRate2 = 0.005)

End(Not run)

getSimulationCounts Get Simulation Counts

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing mean rates for negative binomial distributed event numbers in the two treatment groups

getSimulationCounts 135

testing situation.

Usage

getSimulationCounts(
design = NULL,
plannedCalendarTime
maxNumberOfSubjects
lambdal = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
directionUpper = NA,
thetaHo = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
allocationRatioPlanned = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
showStatistics = FALSE

NA_real_,
NA_real_,

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

plannedCalendarTime
For simulating count data, the time points where an analysis is planned to be
performed. Should be a vector of length kMax

maxNumberOfSubjects
maxNumber0OfSubjects > @ needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

lambda1 A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

theta A numeric value or vector that represents the assumed mean ratios lambdal/lambda2

of a homogeneous Poisson process, there is no default.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

136 getSimulationCounts

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH@ is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: a value != 0 (or a value !=1 for testing the risk ratio pi1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaH®@ !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaHo !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

fixedExposureTime
If specified, the fixed time of exposure per subject for count data, there is no
default.

accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.

accruallntensity

If specified, the assumed accrual intensities for the study, there is no default.

followUpTime If specified, the assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

seed The seed to reproduce the simulation, default is a random seed.

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 and a null hypothesis value thetaH® can be specified.

getSimulationCounts 137

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

names () to obtain the field names,

print() to print the object,

summary () to display a summary of the object,

plot() to plot the object,

as.data.frame() to coerce the object to a data. frame,

as.matrix() to coerce the object to a matrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean

+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.

18.

. iterationNumber: The number of the simulation iteration.
. stageNumber: The stage.
. lambda1: The assumed or derived event rate in the treatment group.

. lambda2: The assumed or derived event rate in the control group.

accrualTime: The assumed accrualTime.

. followUpTime: The assumed followUpTime.
. overdispersion: The assumed overdispersion.
. fixedFollowUp: The assumed fixedFollowUp.

. numberOfSubjects: The number of subjects under consideration when the (interim) analysis

takes place.

rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.
futilityPerStage: 1 if study should be stopped for futility, O otherwise.
testStatistic: The test statistic that is used for the test decision
estimatedLambdal: The estimated rate in treatment group 1.
estimatedLambda2: The estimated rate in treatment group 2.
estimatedOverdispersion: The estimated overdispersion.
infoAnalysis: The Fisher information at interim stage.

trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

conditionalPowerAchieved: Not yet available

138 getSimulationEnrichmentMeans

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples
Not run:
Fixed sample size design with two groups, fixed exposure time
getSimulationCounts(
theta = 1.8,
lambda2 = 0.2,
maxNumberOfSubjects = 200,

2
plannedCalendarTime = 8,
maxNumberOflterations =
fixedExposureTime = 6,
accrualTime = 3,
overdispersion = 2)

Group sequential design alpha spending function design with O'Brien and
Fleming type boundaries: Power and test characteristics for N = 264,
under variable exposure time with uniform recruitment over 1.25 months,
study time (accrual + followup) = 4, interim analysis take place after
equidistant time points (lambdal, lambda2, and overdispersion as specified,
no futility stopping):
dOF <- getDesignGroupSequential(
kMax = 3,
alpha = 0.025,
beta = 0.2,

typeOfDesign = "asOF")

getSimulationCounts(design = dOF,
lambdal = seq(0.04, 0.12, 0.02),
lambda2 = 0.12,
directionUpper = FALSE,
overdispersion = 5,
plannedCalendarTime = (1:3)/3%4,
maxNumberOfSubjects = 264,
followUpTime = 2.75,
accrualTime = 1.25,
maxNumberOflterations = 1000)

End(Not run)

getSimulationEnrichmentMeans
Get Simulation Enrichment Means

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size or testing means in an enrichment design testing situation.

getSimulationEnrichmentMeans 139

Usage

getSimulationEnrichmentMeans(
design = NULL,

effectList = NULL,

intersectionTest = c("Simes"”, "SpiessensDebois”, "Bonferroni”, "Sidak"),
stratifiedAnalysis = TRUE,

adaptations = NA,

typeOfSelection = c("best”, "rBest”, "epsilon”, "all", "userDefined"),
effectMeasure = c("effectEstimate”, "testStatistic"),
successCriterion = c("all”, "atLeastOne"),
epsilonValue = NA_real_,

rValue = NA_real_,

threshold = -Inf,

plannedSubjects = NA_integer_,

allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,

thetaH1l = NA_real_,

stDevH1 = NA_real_,

maxNumberOfIterations = 1000L,

seed = NA_real_,

calcSubjectsFunction = NULL,
selectPopulationsFunction = NULL,

showStatistics = FALSE

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois”,
"Bonferroni”, "Simes”, and "Sidak", default is "Simes".

stratifiedAnalysis
Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection
The way the treatment arms or populations are selected at interim. Five options
are available: "best”, "rbest”, "epsilon”, "all"”, and "userDefined”, de-

140

effectMeasure

getSimulationEnrichmentMeans

faultis "best".

For "rbest” (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon” (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined” is selected, "selectArmsFunction” or
"selectPopulationsFunction” has to be specified.

Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"”), default is "effectEstimate”.

successCriterion

epsilonValue

rvalue

threshold

plannedSubjects

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all” stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all”.

For typeOfSelection = "epsilon” (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

For typeOfSelection = "rbest"” (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both

getSimulationEnrichmentMeans 141

treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.
conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer

of length 1.
seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerSt
(see details and examples).
selectPopulationsFunction
Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plann
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and
survival), stDevH1 (for means), overallEffects, and for rates additionally:
piTreatmentsH1, piControlH1, overallRates, and overallRatesControl
(see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities, and
expected sample size at given number of subjects, parameter configuration, and population selection
rule in the enrichment situation. An allocation ratio can be specified referring to the ratio of number
of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction
This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedPopulations,

142 getSimulationEnrichmentMeans

plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function
has to contain the three-dots argument ’..." (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

* names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:

Assess a population selection strategy with one subset population.
If the subset is better than the full population, then the subset

is selected for the second stage, otherwise the full. Print and plot
design characteristics.

Define design
designIN <- getDesignInverseNormal(kMax = 2)

Define subgroups and their prevalences
subGroups <- c("S", "R") # fixed names!
prevalences <- c(0.2, 0.8)

Define effect matrix and variability
effectR <- 0.2
m <= c()
for (effectS in seq(@, 0.5, 0.25)) {
m <- c(m, effectS, effectR)
3
effects <- matrix(m, byrow = TRUE, ncol = 2)
stDev <- c(0.4, 0.8)

Define effect list
effectlList <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation
simResultsPE <- getSimulationEnrichmentMeans(design = designIN,
effectList = effectList, plannedSubjects = c(50, 100),

getSimulationEnrichmentMeans 143

maxNumberOflterations = 100)
print(simResultsPE)

Assess the design characteristics of a user defined selection
strategy in a three-stage design with no interim efficacy stop
using the inverse normal method for combining the stages.

Only the second interim is used for a selecting of a study
population. There is a small probability for stopping the trial
at the first interim.

o o oH HE

Define design
designIN2 <- getDesignInverseNormal(typeOfDesign = "noEarlyEfficacy”, kMax = 3)

Define selection function
mySelection <- function(effectVector, stage) {
selectedPopulations <- rep(TRUE, 3)
if (stage == 2) {
selectedPopulations <- (effectVector >= c(1, 2, 3))
3
return(selectedPopulations)

}

Define subgroups and their prevalences
subGroups <- c("S1", "S12", "S2", "R") # fixed names!
prevalences <- c(0.2, 0.3, 0.4, 0.1)

effectR <- 1.5
effectS12 = 5
m <- c()
for (effectS1 in seq(@, 5, 1)) {
for (effectS2 in seq(@, 5, 1)) {
m <- c(m, effectS1, effectS12, effectS2, effectR)
}
}
effects <- matrix(m, byrow = TRUE, ncol = 4)
stDev <- 10

Define effect list
effectlList <- list(subGroups=subGroups, prevalences=prevalences, stDevs = stDev, effects = effects)

Perform simulation

simResultsPE <- getSimulationEnrichmentMeans(
design = designIN2,
effectList = effectlList,
typeOfSelection = "userDefined"”,
selectPopulationsFunction = mySelection,
intersectionTest = "Simes”,
plannedSubjects = c(50, 100, 150),
maxNumberOflterations = 100)

print(simResultsPE)

if (require(ggplot2)) plot(simResultsPE, type = 3)

End(Not run)

144 getSimulationEnrichmentRates

getSimulationEnrichmentRates
Get Simulation Enrichment Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in an enrichment design testing situation.

Usage

getSimulationEnrichmentRates(
design = NULL,

effectList = NULL,

intersectionTest = c("Simes”, "SpiessensDebois”, "Bonferroni”, "Sidak"),
stratifiedAnalysis = TRUE,

directionUpper = NA,

adaptations = NA,

typeOfSelection = c("best”, "rBest”, "epsilon”, "all", "userDefined"),
effectMeasure = c("effectEstimate”, "testStatistic"),
successCriterion = c("all”, "atLeastOne"),
epsilonValue = NA_real_,

rValue = NA_real_,

threshold = -Inf,

plannedSubjects = NA_real_,

allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,

piTreatmentH1 = NA_real_,

piControlH1 = NA_real_,

maxNumberOfIterations = 1000L,

seed = NA_real_,

calcSubjectsFunction = NULL,
selectPopulationsFunction = NULL,

showStatistics = FALSE

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectList List of subsets, prevalences, and effect sizes with columns and number of rows

reflecting the different situations to consider (see examples).

getSimulationEnrichmentRates 145

intersectionTest
Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois”,
"Bonferroni”, "Simes”, and "Sidak", default is "Simes".

stratifiedAnalysis
Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection
The way the treatment arms or populations are selected at interim. Five options
are available: "best”, "rbest”, "epsilon”, "all", and "userDefined", de-
fault is "best”.
For "rbest” (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon” (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined” is selected, "selectArmsFunction” or
"selectPopulationsFunction” has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate”.

successCriterion
Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all” stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne"” stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon” (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rvValue For typeOfSelection = "rbest” (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects
plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it

146 getSimulationEnrichmentRates

can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piTreatmentH1 If specified, the assumed probabilities in the active arm under which the sample
size recalculation was performed and the conditional power was calculated.

piControlH1 If specified, the assumed probabilities in the control arm under which the sample
size recalculation was performed and the conditional power was calculated.
maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer

of length 1.
seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerSt
(see details and examples).
selectPopulationsFunction
Optionally, a function can be entered that defines the way of how populations
are selected. This function is allowed to depend on effectVector with length
populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plann
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and
survival), stDevH1 (for means), overallEffects, and for rates additionally:
piTreatmentsH1, piControlH1, overallRates, and overallRatesControl
(see examples).

getSimulationEnrichmentRates 147

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of piTreatmentH1 and/or piControlH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction

This function returns the number of subjects at given conditional power and conditional critical

value for specified testing situation. The function might depend on the variables stage, selectedPopulations,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRatesTreatment,
overallRatesControl, piTreatmentH1, and piControlH1. The function has to contain the three-

dots argument ’..." (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a population selection strategy with two subset populations and
a binary endpoint using a stratified analysis. No early efficacy stop,
weighted inverse normal method with weight sqrt(0.4).
pi2 <- c(0.3, 0.4, 0.3, 0.55)
pilSeq <- seq(@.0, 0.2, 0.2)
pil <- matrix(rep(pilSeq, length(pi2)), ncol = length(pilSeq), byrow = TRUE) + pi2
effectlList <- list(
subGroups = c("s1", "s2", "s12", "R"),
prevalences = c(0.1, 0.4, 0.2, 0.3),

148 getSimulationEnrichmentSurvival

piControl = pi2,
piTreatments = expand.grid(pil[1, 1, pi1[2, 1, pil[3, 1, pill4, 1)

)

design <- getDesignInverseNormal (informationRates = c(0.4, 1),
typeOfDesign = "noEarlyEfficacy”)

simResultsPE <- getSimulationEnrichmentRates(design,
plannedSubjects = c(150, 300),
allocationRatioPlanned = 1.5, directionUpper = TRUE,
effectList = effectlList, stratifiedAnalysis = TRUE,
intersectionTest = "Sidak”,
typeOfSelection = "epsilon”, epsilonValue = 0.025,
maxNumberOfIterations = 100)

print(simResultsPE)

End(Not run)

getSimulationEnrichmentSurvival
Get Simulation Enrichment Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in an enrichment design testing situation. In contrast to
getSimulationSurvival () (where survival times are simulated), normally distributed logrank test
statistics are simulated.

Usage

getSimulationEnrichmentSurvival(
design = NULL,

effectList = NULL,

intersectionTest = c("Simes"”, "SpiessensDebois”, "Bonferroni”, "Sidak"),
stratifiedAnalysis = TRUE,

directionUpper = NA,

adaptations = NA,

typeOfSelection = c("best”, "rBest”, "epsilon”, "all", "userDefined"),
effectMeasure = c("effectEstimate”, "testStatistic"”),

successCriterion = c("all”, "atLeastOne"),

epsilonValue = NA_real_,

rValue = NA_real_,

threshold = -Inf,

plannedEvents = NA_real_,

allocationRatioPlanned = NA_real_,

minNumberOfEventsPerStage = NA_real_,

maxNumberOfEventsPerStage = NA_real_,

conditionalPower = NA_real_,

thetaH1 = NA_real_,

maxNumberOfIterations = 1000L,

seed = NA_real_,

getSimulationEnrichmentSurvival 149

calcEventsFunction = NULL,
selectPopulationsFunction = NULL,
showStatistics = FALSE

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

effectlList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).

intersectionTest
Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois”,
"Bonferroni”, "Simes”, and "Sidak", default is "Simes".

stratifiedAnalysis

Logical. For enrichment designs, typically a stratified analysis should be cho-
sen. For testing rates, also a non-stratified analysis based on overall data can be
performed. For survival data, only a stratified analysis is possible (see Brannath
et al., 2009), default is TRUE.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best”, "rbest”, "epsilon”, "all”, and "userDefined”, de-
fault is "best”.

For "rbest” (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon” (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined” is selected, "selectArmsFunction” or
"selectPopulationsFunction” has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate”.

successCriterion
Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all” stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne"” stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon” (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

150

getSimulationEnrichmentSurvival

rValue For typeOfSelection = "rbest"” (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer

of length 1.
seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-

ple size recalculation. By default, event number recalculation is performed with

conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

getSimulationEnrichmentSurvival 151

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations

are selected. This function is allowed to depend on effectVector with length

populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plann
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and

survival), stDevH1 (for means), overallEffects, and for rates additionally:

piTreatmentsH1, piControlH1, overallRates, and overallRatesControl

(see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected event number at given number of events, parameter configuration, and population
selection rule in the enrichment situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment group as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,

and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction

This function returns the number of events at given conditional power and conditional critical value

for specified testing situation. The function might depend on the variables stage, selectedPopulations,
plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsP
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to

contain the three-dots argument ’..." (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:

Assess a population selection strategy with one subset population and
a survival endpoint. The considered situations are defined through the
event rates yielding a range of hazard ratios in the subsets. Design

152 getSimulationMeans

with O'Brien and Fleming alpha spending and a reassessment of event
number in the first interim based on conditional power and assumed
hazard ratio using weighted inverse normal combination test.

subGroups <- c("S", "R")
prevalences <- c(0.40, 0.60)

p2 <- c(0.3, 0.4)
rangel <- p2[1] + seq(@, 0.3, 0.05)

pl <= cO

for (x1 in rangel) {
pl <- c(p1, x1, p2[2] + 0.1)

3

hazardRatios <- log(matrix(1 - p1, byrow = TRUE, ncol = 2)) /
matrix(log(1 - p2), byrow = TRUE, ncol = 2,
nrow = length(rangel))

effectlList <- list(subGroups=subGroups, prevalences=prevalences,
hazardRatios = hazardRatios)

design <- getDesignInverseNormal (informationRates = c(0.3, 0.7, 1),
typeOfDesign = "asOF")

simResultsPE <- getSimulationEnrichmentSurvival(design,
plannedEvents = c(40, 90, 120),
effectList = effectlList,
typeOfSelection = "rbest”, rValue = 2,
conditionalPower = ©.8, minNumberOfEventsPerStage = c(NA, 50, 30),
maxNumberOfEventsPerStage = c(NA, 150, 30), thetaHl = 4 / 3,
maxNumberOflterations = 100)

print(simResultsPE)

End(Not run)

getSimulationMeans Get Simulation Means

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing means in a one or two treatment groups testing situation.

Usage

getSimulationMeans(
design = NULL,
groups = 2L,
normalApproximation = TRUE,
meanRatio = FALSE,
thetaHo = ifelse(meanRatio, 1, 0),
alternative = seq(@, 1, 0.2),

getSimulationMeans 153

stDev = 1,

plannedSubjects = NA_real_,
directionUpper = NA,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,

thetaHl = NA_real_,

stDevH1 = NA_real_,
maxNumberOfIterations = 1000L,

seed = NA_real_,

calcSubjectsFunction = NULL,
showStatistics = FALSE

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

normalApproximation
The type of computation of the p-values. Default is TRUE, i.e., normally dis-
tributed test statistics are generated. If FALSE, the t test is used for calculating
the p-values, i.e., t distributed test statistics are generated.

meanRatio If TRUE, the design characteristics for one-sided testing of HO: mul / mu2 =
thetaH®@ are simulated, default is FALSE.

thetaHo The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be

specified.

* rates: a value != 0 (or a value !=1 for testing the risk ratio pil1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaH®@ !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaHe !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(@, 1, 0.2).

stDev The standard deviation under which the data is simulated, default is 1. For two-
armed trials, it is allowed to specify the standard deviations separately, i.e., as
vector with two elements. If meanRatio = TRUE is specified, stDev defines the
coefficient of variation sigma / mu2.

154 getSimulationMeans

plannedSubjects
plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

getSimulationMeans 155

seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction
Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerSt
(see details and examples).
showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where nl and n2 are the number of subjects in the two
treatment groups.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfSubjectsPerStage,
and maxNumberOfSubjectsPerStage (or calcSubjectsFunction) are defined.

calcSubjectsFunction

This function returns the number of subjects at given conditional power and conditional critical

value for specified testing situation. The function might depend on variables stage, meanRatio,

thetaHo, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValu
thetaH1, and stDevH1. The function has to contain the three-dots argument ... (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

¢ names() to obtain the field names,

e print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationMeans(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:
simulationResults <- getSimulationMeans(plannedSubjects = 40)

156 getSimulationMeans

simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

1. iterationNumber: The number of the simulation iteration.

2. stageNumber: The stage.

3. alternative: The alternative hypothesis value.

4

. numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

e

rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.
6. futilityPerStage: 1 if study should be stopped for futility, O otherwise.

7. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher’s combination test).

8. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

9. effectEstimate: Overall simulated standardized effect estimate.

10. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

11. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:

Fixed sample size design with two groups, total sample size 40,

alternative = c(@, 0.2, 0.4, 0.8, 1), and standard deviation = 1 (the default)
getSimulationMeans(plannedSubjects = 40, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results
with power calculator using normal approximation
getSimulationMeans(

alternative = 0:4, stDev = 5,

plannedSubjects = 40, maxNumberOflIterations = 1000

)
getPowerMeans(

alternative = 0:4, stDev = 5,

maxNumberOfSubjects = 4@, normalApproximation = TRUE
)

Do the same for a three-stage 0'Brien&Fleming inverse

getSimulationMeans 157

normal group sequential design with non-binding futility stops
designIN <- getDesignInverseNormal(typeOfDesign = "OF"”, futilityBounds = c(@, 0))
x <- getSimulationMeans(designIN,
alternative = c(0:4), stDev = 5,
plannedSubjects = c(20, 40, 60), maxNumberOfIterations = 1000
)
getPowerMeans(designIN,
alternative = 0:4, stDev = 5,
maxNumberOfSubjects = 60, normalApproximation = TRUE

)

Assess power and average sample size if a sample size increase is foreseen
at conditional power 80% for each subsequent stage based on observed overall
effect and specified minNumberOfSubjectsPerStage and
maxNumberOfSubjectsPerStage
getSimulationMeans(designIN,

alternative = 0:4, stDev = 5,

plannedSubjects = c(20, 40, 60),

minNumberOfSubjectsPerStage = c(NA, 20, 20),

maxNumberOfSubjectsPerStage = c(NA, 80, 80),

conditionalPower = 0.8,

maxNumberOfIterations = 50

)

Do the same under the assumption that a sample size increase only takes
place at the first interim. The sample size for the third stage is set equal
to the second stage sample size.
mySampleSizeCalculationFunction <- function(..., stage,
minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage,
sampleSizesPerStage,
conditionalPower,
conditionalCriticalValue,
allocationRatioPlanned,
thetaH1,
stDevH1) {
if (stage <= 2) {
Note that allocationRatioPlanned is as a vector of length kMax
stageSubjects <- (1 + allocationRatioPlanned[stagel)*2 /
allocationRatioPlanned[stage] *
(max(@, conditionalCriticalValue + stats::qnorm(conditionalPower)))*2 /
(max(1e-12, thetaH1 / stDevH1))"2
stageSubjects <- min(max(
minNumberOfSubjectsPerStage[stage],
stageSubjects
), maxNumberOfSubjectsPerStage[stagel)
} else {
stageSubjects <- sampleSizesPerStage[stage - 1]
}
return(stageSubjects)
3
getSimulationMeans(designIN,
alternative = 0:4, stDev = 5,
plannedSubjects = c(20, 40, 60),
minNumberOfSubjectsPerStage = c(NA, 20, 20),
maxNumberOfSubjectsPerStage = c(NA, 80, 80),
conditionalPower = 0.8,

158 getSimulationMultiArmMeans

calcSubjectsFunction = mySampleSizeCalculationFunction,
maxNumberOflterations = 50

)

End(Not run)

getSimulationMultiArmMeans
Get Simulation Multi-Arm Means

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing means in a multi-arm treatment groups testing situation.

Usage

getSimulationMultiArmMeans(
design = NULL,
activeArms = NA_integer_,
effectMatrix = NULL,
typeOfShape = c("linear”, "sigmoidEmax", "userDefined"),
muMaxVector = seq(@, 1, 0.2),
gED50 = NA_real_,

slope = 1,

doselLevels = NA_real_,

intersectionTest = c("Dunnett”, "Bonferroni”, "Simes"”, "Sidak"”, "Hierarchical”),
stDev = 1,

adaptations = NA,

typeOfSelection = c("best”, "rBest”, "epsilon”, "all", "userDefined"),
effectMeasure = c("effectEstimate”, "testStatistic"”),
successCriterion = c("all”, "atLeastOne"),
epsilonValue = NA_real_,

rValue = NA_real_,

threshold = -Inf,

plannedSubjects = NA_integer_,

allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,

thetaH1 = NA_real_,

stDevH1 = NA_real_,

maxNumberOfIterations = 1000L,

seed = NA_real_,

calcSubjectsFunction = NULL,

selectArmsFunction = NULL,

showStatistics = FALSE

getSimulationMultiArmMeans 159

Arguments
design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear”, "sigmoidEmax”, or "userDefined”, default is "linear”.
For "linear"”, muMaxVector specifies the range of effect sizes for the treatment
group with highest response. If "sigmoidEmax" is selected, gED50 and slope
has to be entered to specify the ED50 and the slope of the sigmoid Emax model.
For "sigmoidEmax", muMaxVector specifies the range of effect sizes for the
treatment group with response according to infinite dose. If "userDefined” is

selected, effectMatrix has to be entered.

muMaxVector Range of effect sizes for the treatment group with highest response for "linear”
and "sigmoidEmax" model, default is seq(@, 1, 0.2).

gED50 If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

slope If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

doseLevels The dose levels for the dose response relationship. If not specified, these dose
levelsare 1,...,activeArms.

intersectionTest

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett”,
"Bonferroni”, "Simes”, "Sidak", and "Hierarchical”, defaultis "Dunnett”.

stDev The standard deviation under which the data is simulated, default is 1. For two-
armed trials, it is allowed to specify the standard deviations separately, i.e., as
vector with two elements. If meanRatio = TRUE is specified, stDev defines the
coefficient of variation sigma / mu2.

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best”, "rbest”, "epsilon”, "all"”, and "userDefined”, de-
fault is "best".

For "rbest” (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon” (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined” is selected, "selectArmsFunction” or
"selectPopulationsFunction” has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic”) or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate”), default is "effectEstimate”.

160 getSimulationMultiArmMeans

successCriterion
Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all” stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne"” stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all".

epsilonValue For typeOfSelection = "epsilon” (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rValue For typeOfSelection = "rbest” (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedSubjects
plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or

getSimulationMultiArmMeans 161

thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer

of length 1.
seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerSt
(see details and examples).
selectArmsFunction
Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/planne
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),
stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,
piControlH1, overallRates, and overallRatesControl (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 and/or stDevH1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction

This function returns the number of subjects at given conditional power and conditional critical

value for specified testing situation. The function might depend on the variables stage, selectedArms,
plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage,
conditionalPower, conditionalCriticalValue, overallEffects, and stDevH1. The function

has to contain the three-dots argument ’..." (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

¢ names() to obtain the field names,

* print() to print the object,

162 getSimulationMultiArmMeans

* summary () to display a summary of the object,
* plot() to plot the object,
* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot"”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Assess a treatment-arm selection strategy with three active arms,
if the better of the arms is selected for the second stage, and
compare it with the no-selection case.
Assume a linear dose-response relationship
maxNumberOfIterations <- 100
designIN <- getDesignInverseNormal(typeOfDesign = "OF", kMax = 2)
sim <- getSimulationMultiArmMeans(design = designIN,

activeArms = 3, typeOfShape = "linear”,

muMaxVector = seq(0,0.8,0.2),

intersectionTest = "Simes”,

typeOfSelection = "best”,

plannedSubjects = c(30,60),

maxNumberOfIterations = maxNumberOfIterations)

sim@ <- getSimulationMultiArmMeans(design = designIN,
activeArms = 3, typeOfShape = "linear”,
muMaxVector = seq(0,0.8,0.2),
intersectionTest = "Simes”,
typeOfSelection = "all”,
plannedSubjects = c¢(30,60),
maxNumberOfIterations = maxNumberOfIterations)

sim$rejectAtLeastOne
sim$expectedNumberOfSubjects

sim@$rejectAtLeastOne
sim@$expectedNumberOfSubjects

Compare the power of the conditional Dunnett test with the power of the

combination test using Dunnett's intersection tests if no treatment arm

selection takes place. Asseume a linear dose-response relationship.

maxNumberOfIterations <- 100

designIN <- getDesignInverseNormal(typeOfDesign = "asUser"”,
userAlphaSpending = c(0, 0.025))

designCD <- getDesignConditionalDunnett(secondStageConditioning = TRUE)

index <- 1
for (design in c(designIN, designCD)) {
results <- getSimulationMultiArmMeans(design, activeArms = 3,

getSimulationMultiArmRates 163

muMaxVector = seq(@, 1, 0.2), typeOfShape = "linear"”,
plannedSubjects = cumsum(rep(20, 2)),
intersectionTest = "Dunnett”,
typeOfSelection = "all”, maxNumberOfIterations = maxNumberOfIterations)
if (index == 1) {
drift <- results$effectMatrix[nrow(results$effectMatrix), 1]
plot(drift, results$rejectAtLeastOne, type = "1", 1ty = 1,
lwd = 3, col = "black”, ylab = "Power")
} else {
lines(drift,results$rejectAtLeastOne, type = "1",
1ty = index, lwd = 3, col = "red")
3
index <- index + 1
3
legend("topleft”, legend=c(”Combination Dunnett”, "Conditional Dunnett"),
col=c("black”, "red"), 1ty = (1:2), cex = 0.8)

Assess the design characteristics of a user defined selection
strategy in a two-stage design using the inverse normal method
with constant bounds. Stopping for futility due to

de-selection of all treatment arms.

designIN <- getDesignInverseNormal (typeOfDesign = "P", kMax = 2)

mySelection <- function(effectVector) {
selectedArms <- (effectVector >= c(@, 0.1, 0.3))
return(selectedArms)

}

results <- getSimulationMultiArmMeans(designIN, activeArms = 3,
muMaxVector = seq(@, 1, 0.2),
typeOfShape = "linear”,
plannedSubjects = c(30,60),
intersectionTest = "Dunnett”,
typeOfSelection = "userDefined”,
selectArmsFunction = mySelection,
maxNumberOfIterations = 100)

options(rpact.summary.output.size = "medium")
summary (results)

if (require(ggplot2)) plot(results, type = c(5,3,9), grid = 4)

End(Not run)

getSimulationMultiArmRates
Get Simulation Multi-Arm Rates

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing rates in a multi-arm treatment groups testing situation.

164 getSimulationMultiArmRates

Usage

getSimulationMultiArmRates(
design = NULL,
activeArms = NA_integer_,
effectMatrix = NULL,
typeOfShape = c("linear”, "sigmoidEmax", "userDefined"),
piMaxVector = seq(90.2, 0.5, 0.1),
piControl = 0.2,
gED50 = NA_real_,
slope = 1,
doselLevels = NA_real_,
intersectionTest = c("Dunnett”, "Bonferroni”, "Simes"”, "Sidak", "Hierarchical”),
directionUpper = NA,
adaptations = NA,
typeOfSelection = c("best”, "rBest”, "epsilon”, "all", "userDefined"),
effectMeasure = c("effectEstimate”, "testStatistic"),
successCriterion = c("all”, "atLeastOne"),
epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,
plannedSubjects = NA_real_,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piTreatmentsH1 = NA_real_,
piControlH1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

activeArms The number of active treatment arms to be compared with control, default is 3.

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

typeOfShape The shape of the dose-response relationship over the treatment groups. This can
be either "linear”, "sigmoidEmax", or "userDefined”, default is "linear".
For "linear”, piMaxVector specifies the range of effect sizes for the treatment
group with highest response. If "sigmoidEmax" is selected, gED50 and slope
has to be entered to specify the ED50 and the slope of the sigmoid Emax model.
For "sigmoidEmax"”, piMaxVector specifies the range of effect sizes for the

getSimulationMultiArmRates 165

piMaxVector

piControl

gED50

slope

doselLevels

treatment group with response according to infinite dose. If "userDefined"” is
selected, effectMatrix has to be entered.

Range of assumed probabilities for the treatment group with highest response
for "linear” and "sigmoidEmax" model, default is seq(@, 1, 0.2).

If specified, the assumed probability in the control arm for simulation and under
which the sample size recalculation is performed.

If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

The dose levels for the dose response relationship. If not specified, these dose
levelsare 1, ...,activeArms.

intersectionTest

directionUpper

adaptations

typeOfSelection

effectMeasure

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett”,
"Bonferroni”, "Simes"”, "Sidak"”, and "Hierarchical”, defaultis "Dunnett".

Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

The way the treatment arms or populations are selected at interim. Five options
are available: "best”, "rbest”, "epsilon”, "all", and "userDefined"”, de-
faultis "best".

For "rbest” (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon” (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined” is selected, "selectArmsFunction” or
"selectPopulationsFunction” has to be specified.

Criterion for treatment arm/population selection, either based on test statistic
("testStatistic”) or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"), default is "effectEstimate”.

successCriterion

epsilonValue

rvValue

threshold

Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all” stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne" stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all”.

For typeOfSelection = "epsilon” (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

For typeOfSelection = "rbest"” (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

166 getSimulationMultiArmRates

plannedSubjects
plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

maxNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

piTreatmentsH1 If specified, the assumed probability in the active treatment arm(s) under which
the sample size recalculation is performed.

piControlH1 If specified, the assumed probability in the reference group (if different from
piControl) for which the conditional power was calculated.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer

of length 1.
seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-

ple size recalculation. By default, sample size recalculation is performed with

conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerSt
(see details and examples).

getSimulationMultiArmRates 167

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms

are selected. This function is allowed to depend on effectVector with length

activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/planne
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),

stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,

piControlH1, overallRates, and overallRatesControl (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the

Details

print command, otherwise the output is suppressed, default is FALSE.

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of piTreatmentsH1 and/or piControlH1 makes only sense if kMax > 1 and if
conditionalPower, minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or
calcSubjectsFunction) are defined.

calcSubjectsFunction

This function returns the number of subjects at given conditional power and conditional critical
value for specified testing situation. The function might depend on the variables stage, selectedArms,
directionUpper, plannedSubjects, allocationRatioPlanned, minNumberOfSubjectsPerStage,
maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValue, overallRates,
overallRatesControl, piTreatmentsH1, and piControlH1. The function has to contain the
three-dots argument ’...” (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available

for this object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:

Simulate the power of the combination test with two interim stages and
0'Brien & Fleming boundaries using Dunnett's intersection tests if the

168 getSimulationMultiArmSurvival

best treatment arm is selected at first interim. Selection only take
place if a non-negative treatment effect is observed (threshold = 0);
20 subjects per stage and treatment arm, simulation is performed for
four parameter configurations.
design <- getDesignInverseNormal(typeOfDesign = "OF")
effectMatrix <- matrix(c(0.2,0.2,0.2,
0.4,0.4,0.4,
0.4,0.5,0.5,
0.4,0.5,0.6),
byrow = TRUE, nrow = 4, ncol = 3)
x <- getSimulationMultiArmRates(design = design, typeOfShape = "userDefined”,
effectMatrix = effectMatrix , piControl = 0.2,
typeOfSelection = "best”, threshold = @, intersectionTest = "Dunnett”,
plannedSubjects = c(20, 40, 60),
maxNumberOfIterations = 50)
summary (x)

End(Not run)

getSimulationMultiArmSurvival
Get Simulation Multi-Arm Survival

Description

Returns the simulated power, stopping and selection probabilities, conditional power, and expected
sample size for testing hazard ratios in a multi-arm treatment groups testing situation. In contrast
to getSimulationSurvival() (where survival times are simulated), normally distributed logrank

test statistics are simulated.

Usage

getSimulationMultiArmSurvival(
design = NULL,
activeArms = NA_integer_,
effectMatrix = NULL,
typeOfShape = c("linear”, "sigmoidEmax", "userDefined"),
omegaMaxVector = seq(1, 2.6, 0.4),
gED50 = NA_real_,
slope = 1,
doselLevels = NA_real_,

intersectionTest = c("Dunnett”, "Bonferroni”, "Simes”, "Sidak"”, "Hierarchical”),

directionUpper = NA,
adaptations = NA,
typeOfSelection = c("best”, "rBest”, "epsilon”, "all", "userDefined"),

effectMeasure = c("effectEstimate”, "testStatistic"),
successCriterion = c("all”, "atLeastOne"),
correlationComputation = c("alternative”, "null"),

epsilonValue = NA_real_,
rValue = NA_real_,
threshold = -Inf,

getSimulationMultiArmSurvival 169

plannedEvents

= NA_real _,

allocationRatioPlanned = NA_real_,

minNumberOfEventsPerStage

NA_real_,

maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,

thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,

seed = NA_real_,

calcEventsFunction = NULL,
selectArmsFunction = NULL,
showStatistics = FALSE

Arguments

design

activeArms

effectMatrix

typeOfShape

omegaMaxVector

gED50

slope

doselevels

The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

The number of active treatment arms to be compared with control, default is 3.

Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

The shape of the dose-response relationship over the treatment groups. This can
be either "linear”, "sigmoidEmax", or "userDefined”, default is "linear".

For "linear"”, omegaMaxVector specifies the range of effect sizes for the treat-
ment group with highest response. If "sigmoidEmax” is selected, gED50@ and
slope has to be entered to specify the ED50 and the slope of the sigmoid
Emax model. For "sigmoidEmax"”, omegaMaxVector specifies the range of ef-
fect sizes for the treatment group with response according to infinite dose. If

"userDefined" is selected, effectMatrix has to be entered.

Range of hazard ratios with highest response for "1inear” and "sigmoidEmax”
model, default is seq(1, 2.6, 0.4).

If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

The dose levels for the dose response relationship. If not specified, these dose
levelsare 1, ...,activeArms.

intersectionTest

directionUpper

adaptations

Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett”,
"Bonferroni”, "Simes”, "Sidak", and "Hierarchical”, defaultis "Dunnett”.

Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep(TRUE, kMax - 1).

170 getSimulationMultiArmSurvival

typeOfSelection

The way the treatment arms or populations are selected at interim. Five options
are available: "best”, "rbest”, "epsilon”, "all"”, and "userDefined”, de-
fault is "best”.

For "rbest” (select the rValue best treatment arms/populations), the parame-
ter rValue has to be specified, for "epsilon” (select treatment arm/population
not worse than epsilon compared to the best), the parameter epsilonValue
has to be specified. If "userDefined” is selected, "selectArmsFunction” or
"selectPopulationsFunction” has to be specified.

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate”), default is "effectEstimate”.

successCriterion
Defines when the study is stopped for efficacy at interim. Two options are avail-
able: "all” stops the trial if the efficacy criterion is fulfilled for all selected
treatment arms/populations, "atLeastOne"” stops if at least one of the selected
treatment arms/populations is shown to be superior to control at interim, default
is "all”.

correlationComputation
If correlationComputation = "alternative”, for simulating log-rank statis-
tics in the many-to-one design, a correlation matrix according to Deng et al.
(Biometrics, 2019) accounting for the respective alternative is used; if correlationComputation
="null”, a constant correlation matrix valid under the null, i.e., not accounting
for the alternative is used, default is "alternative”.

epsilonValue For typeOfSelection = "epsilon” (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

rvValue For typeOfSelection = "rbest” (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.

threshold Selection criterion: treatment arm / population is selected only if effectMeasure
exceeds threshold, default is -Inf. threshold can also be a vector of length
activeArms referring to a separate threshold condition over the treatment arms.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

getSimulationMultiArmSurvival 171

maxNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer

of length 1.
seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction

Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).
selectArmsFunction
Optionally, a function can be entered that defines the way of how treatment arms
are selected. This function is allowed to depend on effectVector with length
activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/planne
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),
stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,
piControlH1, overallRates, and overallRatesControl (see examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, selection probabilities,
and expected sample size at given number of subjects, parameter configuration, and treatment arm
selection rule in the multi-arm situation. An allocation ratio can be specified referring to the ratio
of number of subjects in the active treatment groups as compared to the control group.

The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage (or calcEventsFunction) are defined.

calcEventsFunction

This function returns the number of events at given conditional power and conditional critical value

for specified testing situation. The function might depend on the variables stage, selectedArms,

plannedEvents, directionUpper, allocationRatioPlanned, minNumberOfEventsPerStage, maxNumberOfEventsP
conditionalPower, conditionalCriticalValue, and overallEffects. The function has to

contain the three-dots argument ’..." (see examples).

172 getSimulationMultiArmSurvival

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

¢ names () to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to a matrix.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot”)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:

Assess different selection rules for a two-stage survival design with

0'Brien & Fleming alpha spending boundaries and (non-binding) stopping

for futility if the test statistic is negative.

Number of events at the second stage is adjusted based on conditional

power 80% and specified minimum and maximum number of Events.

design <- getDesignInverseNormal(typeOfDesign = "asOF", futilityBounds = @)

y1 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes"”, typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1, 2, 0.5), gED50 = 2, slope = 4,
typeOfSelection = "best”, conditionalPower = 0.8,
minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOflterations = 50,
plannedEvents = c(75, 120))

y2 <- getSimulationMultiArmSurvival(design = design, activeArms = 4,
intersectionTest = "Simes"”, typeOfShape = "sigmoidEmax",
omegaMaxVector = seq(1,2,0.5), gED50 = 2, slope = 4,
typeOfSelection = "epsilon”, epsilonValue = 0.2,
effectMeasure = "effectEstimate”,
conditionalPower = ©.8, minNumberOfEventsPerStage = c(NA_real_, 30),
maxNumberOfEventsPerStage = c(NA_real_, 90),
maxNumberOfIterations = 50,
plannedEvents = c(75, 120))

yl1$effectMatrix

y1$rejectAtLeastOne
y2$rejectAtLeastOne

yl1$selectedArms

getSimulationRates 173

y2$selectedArms

End(Not run)

getSimulationRates Get Simulation Rates

Description

Returns the simulated power, stopping probabilities, conditional power, and expected sample size
for testing rates in a one or two treatment groups testing situation.

Usage

getSimulationRates(
design = NULL,
groups = 2L,
normalApproximation = TRUE,
riskRatio = FALSE,
thetaHo = ifelse(riskRatio, 1, 0),
pil = seq(@.2, 0.5, 0.1),
pi2 = NA_real_,
plannedSubjects = NA_real_,
directionUpper = NA,
allocationRatioPlanned = NA_real_,
minNumberOfSubjectsPerStage = NA_real_,
maxNumberOfSubjectsPerStage = NA_real_,
conditionalPower = NA_real_,
piTH1 = NA_real_,
pi2H1 = NA_real_,
maxNumberOfIterations = 1000L,
seed = NA_real_,
calcSubjectsFunction = NULL,
showStatistics = FALSE

)
Arguments

design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

groups The number of treatment groups (1 or 2), default is 2.

normalApproximation

The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.

174

riskRatio

thetaHo

pil

pi2

plannedSubjects

directionUpper

getSimulationRates

If TRUE, the design characteristics for one-sided testing of HO: pil /pi2=
thetaH®@ are simulated, default is FALSE.

The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: a value != 0 (or a value != 1 for testing the risk ratio pi1 / pi2) can
be specified.

 survival data: a bound for testing HO: hazard ratio = thetaHo !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaHo !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(@.2, 0.5, 0.1)
(power calculations and simulations) or seq(@.4, .6, @.1) (sample size cal-
culations).

A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is @. 2.

plannedSubjects is a numeric vector of length kMax (the number of stages of
the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

getSimulationRates 175

maxNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), pi1H1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

pilH1 If specified, the assumed probability in the active treatment group if two treat-
ment groups are considered, or the assumed probability for a one treatment
group design, for which the conditional power was calculated.

pi2H1 If specified, the assumed probability in the reference group if two treatment
groups are considered, for which the conditional power was calculated.
maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer

of length 1.
seed The seed to reproduce the simulation, default is a random seed.
calcSubjectsFunction

Optionally, a function can be entered that defines the way of performing the sam-

ple size recalculation. By default, sample size recalculation is performed with

conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerSt
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of subjects and parameter configuration. Additionally, an
allocation ratio = n1/n2 can be specified where nl and n2 are the number of subjects in the two
treatment groups.

The definition of piTH1 and/or pi2H1 makes only sense if kMax > 1 and if conditionalPower,
minNumberOfSubjectsPerStage, and maxNumberOfSubjectsPerStage (or calcSubjectsFunction)
are defined.

calcSubjectsFunction

This function returns the number of subjects at given conditional power and conditional critical

value for specified testing situation. The function might depend on variables stage, riskRatio,

thetaHo, groups, plannedSubjects, sampleSizesPerStage, directionUpper, allocationRatioPlanned,
minNumberOfSubjectsPerStage, maxNumberOfSubjectsPerStage, conditionalPower, conditionalCriticalValu
overallRate, farringtonManningValuel, and farringtonManningValue2. The function has to

contain the three-dots argument ’..." (see examples).

176 getSimulationRates

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

¢ names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:
simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$show(showStatistics = FALSE)

Example 2:

simulationResults <- getSimulationRates(plannedSubjects = 40)
simulationResults$setShowStatistics(FALSE)
simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

iterationNumber: The number of the simulation iteration.

stageNumber: The stage.

pil: The assumed or derived event rate in the treatment group (if available).

pi2: The assumed or derived event rate in the control group (if available).

A

numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

*

rejectPerStage: 1 if null hypothesis can be rejected, 0 otherwise.
7. futilityPerStage: 1 if study should be stopped for futility, O otherwise.

8. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

9. testStatisticsPerStage: The test statistic for each stage if only data from the considered
stage is taken into account.

10. overallRatel: The cumulative rate in treatment group 1.
11. overallRate2: The cumulative rate in treatment group 2.

12. stagewiseRates1: The stage-wise rate in treatment group 1.

getSimulationRates

13. stagewiseRates2: The stage-wise rate in treatment group 2.
14. sampleSizesPerStagel: The stage-wise sample size in treatment group 1.

15. sampleSizesPerStage2: The stage-wise sample size in treatment group 2.

177

16. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE

otherwise.

17. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user

defined with pi1H1 and pi2H1.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and

obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples
Not run:
Fixed sample size design (two groups) with total sample

#

getSimulationRates(pil = seq(@.3, 0.6, 0.1), pi2

size 120, pil = (0.3,0.4,0.5,0.6) and pi2 = 9.3

0.3,
plannedSubjects = 120, maxNumberOfIterations = 10)

Increase number of simulation iterations and compare results with power calculator
getSimulationRates(pil = seq(@0.3, 0.6, 0.1), pi2 = 0.3,

plannedSubjects = 120, maxNumberOfIterations = 50)

getPowerRates(pil = seq(@.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects = 120)

#
#

Do the same for a two-stage Pocock inverse normal group sequential
design with non-binding futility stops

designIN <- getDesignInverseNormal (typeOfDesign = "P", futilityBounds = c(0))
getSimulationRates(designIN, pil = seq(@.3, 0.6, 0.1), pi2 = 0.3,

getPowerRates(designIN, pil = seq(@.3, 0.6, 0.1), pi2 = 0.3, maxNumberOfSubjects

o o R

plannedSubjects = c(40, 80), maxNumberOflterations = 50)

Assess power and average sample size if a sample size reassessment is

80)

foreseen at conditional power 80% for the subsequent stage (decrease and increase)
based on observed overall (cumulative) rates and specified minNumberOfSubjectsPerStage

and maxNumberOfSubjectsPerStage

Do the same under the assumption that a sample size increase only takes place
if the rate difference exceeds the value 0.1 at interim. For this, the sample
size recalculation method needs to be redefined:
mySampleSizeCalculationFunction <- function(..., stage,

plannedSubjects,

minNumberOfSubjectsPerStage,

maxNumberOfSubjectsPerStage,

conditionalPower,

conditionalCriticalValue,

overallRate) {
if (overallRate[1] - overallRate[2] < 0.1) {

return(plannedSubjects[stage] - plannedSubjects[stage - 11)
} else {

178 getSimulationSurvival

rateUnderHo <- (overallRate[1] + overallRate[2]) / 2
stageSubjects <- 2 * (max(@, conditionalCriticalValue =*
sqrt(2 * rateUnderHo * (1 - rateUnderHo)) +
stats::gnorm(conditionalPower) * sqrt(overallRate[1] *
(1 - overallRate[1]) + overallRate[2] x (1 - overallRate[2]))))*2 /
(max(1e-12, (overallRate[1] - overallRate[2])))"2
stageSubjects <- ceiling(min(max(
minNumberOfSubjectsPerStage[stage],
stageSubjects), maxNumberOfSubjectsPerStage[stagel]))
return(stageSubjects)

3

3

getSimulationRates(designIN, pil = seq(@.3, 0.6, 0.1), pi2 = 0.3,
plannedSubjects = c(40, 8@), minNumberOfSubjectsPerStage = c(40, 20),
maxNumberOfSubjectsPerStage = c(40, 160), conditionalPower = 0.8,

calcSubjectsFunction = mySampleSizeCalculationFunction, maxNumberOfIterations = 50)

End(Not run)

getSimulationSurvival Get Simulation Survival

Description

Returns the analysis times, power, stopping probabilities, conditional power, and expected sample
size for testing the hazard ratio in a two treatment groups survival design.

Usage

getSimulationSurvival(
design = NULL,

thetaHo = 1,

directionUpper = NA,

pil = NA_real_,

pi2 = NA_real_,

lambdal = NA_real_,

lambda2 = NA_real_,

mediani NA_real_,

median2 = NA_real_,

hazardRatio = NA_real_,

kappa = 1,

piecewiseSurvivalTime = NA_real_,
allocationl = 1,

allocation2 = 1,

eventTime = 12,

accrualTime = c(0, 12),
accruallntensity = 0.1,
accruallntensityType = c("auto”, "absolute”, "relative"),
dropoutRatel = 0,

dropoutRate2 = 0,

getSimulationSurvival

dropoutTime =

179

12,

maxNumberOfSubjects = NA_real_,

plannedEvents

= NA_real_,

minNumberOfEventsPerStage = NA_real_,
maxNumberOfEventsPerStage = NA_real_,
conditionalPower = NA_real_,

thetaH1 = NA_real_,
maxNumberOfIterations = 1000L,
maxNumberOfRawDatasetsPerStage = 0,
longTimeSimulationAllowed = FALSE,
seed = NA_real_,

calcEventsFunction = NULL,
showStatistics = FALSE

Arguments

design

thetaHo

directionUpper

pil

pi2

lambdat

The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.

Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.

The null hypothesis value, default is @ for the normal and the binary case (test-
ing means and rates, respectively), it is 1 for the survival case (testing the hazard
ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is, in
case of (one-sided) testing of

* means: a value !=0 (or a value !=1 for testing the mean ratio) can be
specified.

* rates: a value != 0 (or a value !=1 for testing the risk ratio pi1 / pi2) can
be specified.

* survival data: a bound for testing HO: hazard ratio = thetaH®@ !=1 can
be specified.

* count data: a bound for testing HO: lambdal / lambda2 = thetaHo !=1
can be specified.

For testing a rate in one sample, a value thetaH@ in (0, 1) has to be specified for
defining the null hypothesis HO: pi = thetaHe.

Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(@.2, 0.5, @.1) (power calculations and simulations) or
seq(@.4, 0.6, 0.1) (sample size calculations).

A numeric value that represents the assumed event rate in the control group,
default is 0. 2.

The assumed hazard rate in the treatment group, there is no default. lambdaT
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

180 getSimulationSurvival

lambda?2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

mediani The assumed median survival time in the treatment group, there is no default.

median?2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

kappa A numeric value > 0. A kappa !=1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull(t, shape = kappa, scale =1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate’.
For example, getPiecewiseExponentialDistribution(time = 130, piecewiselLambda
=0.01, kappa =4.2) and pweibull(q =130, shape=4.2, scale=1/0.01)
provide the same result.

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

allocationi The number how many subjects are assigned to treatment 1 in a subsequent
order, default is 1

allocation2 The number how many subjects are assigned to treatment 2 in a subsequent
order, default is 1

eventTime The assumed time under which the event rates are calculated, default is 12.

accrualTime The assumed accrual time intervals for the study, default is c(@, 12) (for details
see getAccrualTime()).

accruallntensity

A numeric vector of accrual intensities, default is the relative intensity @.1 (for
details see getAccrualTime()).

accruallntensityType
A character value specifying the accrual intensity input type. Must be one of

"auto”, "absolute”, or "relative"”; default is "auto”, i.e., if all values are <
1 the type is "relative”, otherwise it is "absolute”.

dropoutRate1 The assumed drop-out rate in the treatment group, default is 0.

dropoutRate2 The assumed drop-out rate in the control group, default is 0.

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.
maxNumberOfSubjects

maxNumberOfSubjects > @ needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

getSimulationSurvival 181

minNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

maxNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

conditionalPower
If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-
vival designs) is specified, a sample size recalculation based on the specified
conditional power is performed. It is defined as the power for the subsequent
stage given the current data. By default, the conditional power will be calcu-
lated under the observed effect size. Optionally, you can also specify thetaH1
and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or
thetaH1 (for simulating hazard ratios) as parameters under which it is calculated
and the sample size recalculation is performed.

thetaH1 If specified, the value of the alternative under which the conditional power or
sample size recalculation calculation is performed. Must be a numeric of length
1.

maxNumberOfIterations
The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

maxNumberOfRawDatasetsPerStage
The number of raw datasets per stage that shall be extracted and saved as data. frame,
default is 0. getRawData() can be used to get the extracted raw data from the
object.

longTimeSimulationAllowed
Logical that indicates whether long time simulations that consumes more than
30 seconds are allowed or not, default is FALSE.

seed The seed to reproduce the simulation, default is a random seed.
calcEventsFunction
Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

Details

At given design the function simulates the power, stopping probabilities, conditional power, and
expected sample size at given number of events, number of subjects, and parameter configura-
tion. It also simulates the time when the required events are expected under the given assump-
tions (exponentially, piecewise exponentially, or Weibull distributed survival times and constant
or non-constant piecewise accrual). Additionally, integers allocationl and allocation2 can be
specified that determine the number allocated to treatment group 1 and treatment group 2, respec-
tively. More precisely, unequal randomization ratios must be specified via the two integer arguments

182 getSimulationSurvival

allocationl and allocation2 which describe how many subjects are consecutively enrolled in
each group, respectively, before a subject is assigned to the other group. For example, the arguments
allocation1 =2,allocation2 = 1, maxNumberOfSubjects = 300 specify 2:1 randomization with
200 subjects randomized to intervention and 100 to control. (Caveat: Do not use allocationl =
200, allocation2 = 100, maxNumberOfSubjects = 300 as this would imply that the 200 interven-
tion subjects are enrolled prior to enrollment of any control subjects.)

conditionalPower
The definition of thetaH1 makes only sense if kMax > 1 and if conditionalPower, minNumberOfEventsPerStage,
and maxNumberOfEventsPerStage are defined.

Note that numberOfSubjects, numberOfSubjects1, and numberOfSubjects2 in the output are the
expected number of subjects.

calcEventsFunction

This function returns the number of events at given conditional power and conditional critical value

for specified testing situation. The function might depend on variables stage, conditionalPower,

thetaHo@, plannedEvents, singleEventsPerStage, minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
allocationRatioPlanned, conditionalCriticalValue, The function has to contain the three-

dots argument ’..." (see examples).

Value

Returns a SimulationResults object. The following generics (R generic functions) are available
for this object:

* names() to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

Piecewise survival time

The first element of the vector piecewiseSurvivalTime must be equal to 0. piecewiseSurvivalTime
can also be a list that combines the definition of the time intervals and hazard rates in the reference
group. The definition of the survival time in the treatment group is obtained by the specification of
the hazard ratio (see examples for details).

Staggered patient entry

accrualTime is the time period of subjects’ accrual in a study. It can be a value that defines the
end of accrual or a vector. In this case, accrualTime can be used to define a non-constant accrual
over time. For this, accrualTime is a vector that defines the accrual intervals. The first element
of accrualTime must be equal to @ and, additionally, accrualIntensity needs to be specified.
accruallntensity itself is a value or a vector (depending on the length of accrualTime) that
defines the intensity how subjects enter the trial in the intervals defined through accrualTime.

accrualTime can also be a list that combines the definition of the accrual time and accrual intensity
(see below and examples for details).

If the length of accrualTime and the length of accrualIntensity are the same (i.e., the end
of accrual is undefined), maxNumberOfSubjects > @ needs to be specified and the end of accrual
is calculated. In that case, accrualIntensity is the number of subjects per time unit, i.e., the
absolute accrual intensity.

getSimulationSurvival 183

If the length of accrualTime equals the length of accrualIntensity - 1 (i.e., the end of accrual
is defined), maxNumberOfSubjects is calculated if the absolute accrual intensity is given. If all
elements in accrualIntensity are smaller than 1, accrualIntensity defines the relative inten-
sity how subjects enter the trial. For example, accrualIntensity =c(@.1, @.2) specifies that in
the second accrual interval the intensity is doubled as compared to the first accrual interval. The
actual (absolute) accrual intensity is calculated for the calculated or given maxNumberOfSubjects.
Note that the default is accrualIntensity = 0.1 meaning that the absolute accrual intensity will
be calculated.

Simulation Data

The summary statistics "Simulated data" contains the following parameters: median range; mean
+/-sd

$show(showStatistics = FALSE) or $setShowStatistics(FALSE) can be used to disable the
output of the aggregated simulated data.

Example 1:

simulationResults <- getSimulationSurvival (maxNumberOfSubjects = 100, plannedEvents
=30)

simulationResults$show(showStatistics = FALSE)

Example 2:

simulationResults <- getSimulationSurvival (maxNumberOfSubjects = 100, plannedEvents
=30)

simulationResults$setShowStatistics(FALSE)

simulationResults

getData() can be used to get the aggregated simulated data from the object as data.frame. The
data frame contains the following columns:

iterationNumber: The number of the simulation iteration.

stageNumber: The stage.

pil: The assumed or derived event rate in the treatment group.

pi2: The assumed or derived event rate in the control group.

hazardRatio: The hazard ratio under consideration (if available).

analysisTime: The analysis time.

NSk

numberOfSubjects: The number of subjects under consideration when the (interim) analysis
takes place.

*®

eventsPerStagel: The observed number of events per stage in treatment group 1.
9. eventsPerStage2: The observed number of events per stage in treatment group 2.
10. singleEventsPerStage: The observed number of events per stage in both treatment groups.
11. rejectPerStage: 1 if null hypothesis can be rejected, O otherwise.
12. futilityPerStage: 1 if study should be stopped for futility, O otherwise.

13. eventsNotAchieved: 1 if number of events could not be reached with observed number of
subjects, 0 otherwise.

14. testStatistic: The test statistic that is used for the test decision, depends on which design
was chosen (group sequential, inverse normal, or Fisher combination test)’

184 getSimulationSurvival

15. logRankStatistic: Z-score statistic which corresponds to a one-sided log-rank test at con-
sidered stage.

16. hazardRatioEstimatelLR: The estimated hazard ratio, derived from the log-rank statistic.

17. trialStop: TRUE if study should be stopped for efficacy or futility or final stage, FALSE
otherwise.

18. conditionalPowerAchieved: The conditional power for the subsequent stage of the trial for
selected sample size and effect. The effect is either estimated from the data or can be user
defined with thetaH1.

Raw Data

getRawData() can be used to get the simulated raw data from the object as data. frame. Note that
getSimulationSurvival () must called before with maxNumberOfRawDatasetsPerStage > 0.

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot™)
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

Examples

Not run:
Fixed sample size with minimum required definitions, pil = (0.3,0.4,0.5,0.6) and
pi2 = 0.3 at event time 12, and accrual time 24
getSimulationSurvival(

pil = seq(@.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,

accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,
maxNumberOflterations = 10
)
Increase number of simulation iterations
getSimulationSurvival(
pil = seq(@.3, 0.6, 0.1), pi2 = 0.3, eventTime = 12,
accrualTime = 24, plannedEvents = 40, maxNumberOfSubjects = 200,

maxNumberOfIterations = 50

)

Determine necessary accrual time with default settings if 200 subjects and
30 subjects per time unit can be recruited
getSimulationSurvival(
plannedEvents = 40, accrualTime = 0,
accruallntensity = 30, maxNumberOfSubjects = 200, maxNumberOflterations = 50

)

Determine necessary accrual time with default settings if 200 subjects and
if the first 6 time units 20 subjects per time unit can be recruited,
then 30 subjects per time unit
getSimulationSurvival(
plannedEvents = 40, accrualTime = c(@, 6),
accruallntensity = c(20, 30), maxNumberOfSubjects = 200,
maxNumberOflterations = 50

getSimulationSurvival 185

Determine maximum number of Subjects with default settings if the first
6 time units 20 subjects per time unit can be recruited, and after
10 time units 30 subjects per time unit
getSimulationSurvival(
plannedEvents = 40, accrualTime = c(@, 6, 10),
accruallntensity = c(20, 30), maxNumberOfIterations = 50

)
Specify accrual time as a list
at <- list(
"9 - <6" = 20,
"6 - Inf" = 30
)

getSimulationSurvival(
plannedEvents = 40, accrualTime = at,
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)
Specify accrual time as a list, if maximum number of subjects need to be calculated
at <- list(
"0 - <6" = 20,
"6 - <=10" = 30
)

getSimulationSurvival(plannedEvents = 40, accrualTime = at, maxNumberOfIterations = 50)

Specify effect size for a two-stage group sequential design with
0'Brien & Fleming boundaries. Effect size is based on event rates
at specified event time, directionUpper = FALSE needs to be specified
because it should be shown that hazard ratio < 1
designGS <- getDesignGroupSequential(kMax = 2)
getSimulationSurvival(
design = designGS,
pil = 0.2, pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE, maxNumberOfIterations = 50
)

As above, but with a three-stage 0'Brien and Fleming design with
specified information rates, note that planned events consists of integer values
designGS2 <- getDesignGroupSequential (informationRates = c(0.4, 0.7, 1))
getSimulationSurvival(

design = designGS2,

pil = 0.2, pi2 = 0.3, eventTime = 24,

plannedEvents = round(designGS2$informationRates * 40),

maxNumberOfSubjects = 200, directionUpper = FALSE,

maxNumberOflterations = 50

)

Effect size is based on event rate at specified event time for the reference

group and hazard ratio, directionUpper = FALSE needs to be specified because

it should be shown that hazard ratio < 1

getSimulationSurvival(
design = designGS, hazardRatio = 0.5,
pi2 = 0.3, eventTime = 24, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50

186 getSimulationSurvival

Effect size is based on hazard rate for the reference group and
hazard ratio, directionUpper = FALSE needs to be specified because
it should be shown that hazard ratio < 1
getSimulationSurvival(
design = designGS,
hazardRatio = 0.5, lambda2 = 0.02, plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time and hazard ratios,
note that in getSimulationSurvival only on hazard ratio is used
in the case that the survival time is piecewise expoential
getSimulationSurvival(
design = designGS,
piecewiseSurvivalTime = c(@, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
hazardRatio = 1.5, plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

pws <- list(
"0 - <5" =90.01,
"5 - <10" = 0.02,
">=10" = 0.04

)

getSimulationSurvival(
design = designGS,
piecewiseSurvivalTime = pws, hazardRatio = c(1.5),
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time for both treatment arms
getSimulationSurvival(
design = designGS,
piecewiseSurvivalTime = c(@, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambdal = c(0.015, .03, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50
)

Specification of piecewise exponential survival time as a list,
note that in getSimulationSurvival only on hazard ratio

(not a vector) can be used

pws <- list(

"o - <5" = 0.01,
"5 - <10" = 0.02,
">=10" = 0.04

)

getSimulationSurvival(
design = designGS,
piecewiseSurvivalTime = pws, hazardRatio = 1.5,
plannedEvents = c(20, 40), maxNumberOfSubjects = 200,
maxNumberOfIterations = 50

)

Specification of piecewise exponential survival time and delayed effect
(response after 5 time units)

getSimulationSurvival 187

getSimulationSurvival(
design = designGS,
piecewiseSurvivalTime = c(@, 5, 10), lambda2 = c(0.01, 0.02, 0.04),
lambdal = c(0.01, 0.02, 0.06), plannedEvents = c(20, 40),
maxNumberOfSubjects = 200, maxNumberOfIterations = 50

)

Specify effect size based on median survival times
getSimulationSurvival(
medianl = 5, median2 = 3, plannedEvents = 40,
maxNumberOfSubjects = 200, directionUpper = FALSE,
maxNumberOfIterations = 50

)

Specify effect size based on median survival
times of Weibull distribtion with kappa = 2
getSimulationSurvival(
medianl = 5, median2 = 3, kappa = 2,
plannedEvents = 40, maxNumberOfSubjects = 200,
directionUpper = FALSE, maxNumberOfIterations = 50

Perform recalculation of number of events based on conditional power for a
three-stage design with inverse normal combination test, where the conditional power
is calculated under the specified effect size thetaHl = 1.3 and up to a four-fold
increase in originally planned sample size (number of events) is allowed.

Note that the first value in minNumberOfEventsPerStage and

maxNumberOfEventsPerStage is arbitrary, i.e., it has no effect.

designIN <- getDesignInverseNormal(informationRates = c(0.4, 0.7, 1))

% o H W

resultsWithSSR1 <- getSimulationSurvival(
design = designIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, thetaHl = 1.3,
plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 x c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSR1

If thetaH1 is unspecified, the observed hazard ratio estimate
(calculated from the log-rank statistic) is used for performing the
recalculation of the number of events
resultsWithSSR2 <- getSimulationSurvival(
design = designIN,
hazardRatio = seq(1, 1.6, 0.1),
pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 x c(NA, 44, 44),
maxNumberOfSubjects = 800, maxNumberOfIterations = 50

)
resultsWithSSR2

Compare it with design without event size recalculation
resultsWithoutSSR <- getSimulationSurvival(
design = designIN,

188

)

getSimulationSurvival

hazardRatio = seq(1, 1.6, 0.1), pi2 = 0.3,
plannedEvents = c(58, 102, 145), maxNumberOfSubjects = 800,
maxNumberOfIterations = 50

resultsWithoutSSR$overallReject
resultsWithSSR1$overallReject
resultsWithSSR2$overallReject

Confirm that event size racalcuation increases the Type I error rate,
i.e., you have to use the combination test
resultsWithSSRGS <- getSimulationSurvival(

)

design = designGS2,

hazardRatio = seq(1),

pi2 = 0.3, conditionalPower = 0.8, plannedEvents = c(58, 102, 145),
minNumberOfEventsPerStage = c(NA, 44, 44),
maxNumberOfEventsPerStage = 4 x c(NA, 44, 44),

maxNumberOfSubjects = 800, maxNumberOfIterations = 50

resultsWithSSRGS$overallReject

Set seed to get reproducable results
identical(

)

getSimulationSurvival(
plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99

Y$analysisTime,

getSimulationSurvival(
plannedEvents = 40, maxNumberOfSubjects = 200,
seed = 99

Y$analysisTime

Perform recalculation of number of events based on conditional power as above.

The number of events is recalculated only in the first interim, the recalculated number

is also used for the final stage. Here, we use the user defind calcEventsFunction as

follows (note that the last stage value in minNumberOfEventsPerStage and maxNumberOfEventsPerStage
has no effect):

myCalcEventsFunction <- function(...,

}

stage, conditionalPower, estimatedTheta,
plannedEvents, eventsOverStages,
minNumberOfEventsPerStage, maxNumberOfEventsPerStage,
conditionalCriticalValue) {
theta <- max(1 + 1e-12, estimatedTheta)
if (stage == 2) {
requiredStageEvents <-
max (@, conditionalCriticalValue + gnorm(conditionalPower))*2 * 4 / log(theta)"2
requiredOverallStageEvents <- min(
max (minNumberOfEventsPerStage[stage], requiredStageEvents),
maxNumberOfEventsPerStage[stage]
) + eventsOverStages[stage - 1]
} else {
requiredOverallStageEvents <- 2 * eventsOverStages[stage - 1] - eventsOverStages[1]
}

return(requiredOverallStageEvents)

resultsWithSSR <- getSimulationSurvival(

design = designIN,

getStageResults 189

hazardRatio = seq(1, 2.6, 0.5),

pi2 = 0.3,

conditionalPower = 0.8,

plannedEvents = c(58, 102, 146),
minNumberOfEventsPerStage = c(NA, 44, 4),
maxNumberOfEventsPerStage = 4 x c(NA, 44, 4),
maxNumberOfSubjects = 800,

calcEventsFunction = myCalcEventsFunction,
seed = 1234,

maxNumberOfIterations = 50

)

End(Not run)

getStageResults Get Stage Results

Description

Returns summary statistics and p-values for a given data set and a given design.

Usage

getStageResults(
design,
datalnput,
stage = NA_integer_,
directionUpper = NA

)
Arguments
design The trial design.
dataInput The summary data used for calculating the test results. This is either an element

of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset (). For more information see getDataset ().

Further (optional) arguments to be passed:
thetaH® The null hypothesis value, default is @ for the normal and the binary

case (testing means and rates, respectively), itis 1 for the survival case (test-
ing the hazard ratio).

For non-inferiority designs, thetaH® is the non-inferiority bound. That is,
in case of (one-sided) testing of
* means: a value != 0 (or a value !=1 for testing the mean ratio) can be
specified.
e rates: avalue != 0 (or a value !=1 for testing the risk ratio pi1 / pi2)
can be specified.
* survival data: a bound for testing HO: hazard ratio = thetaHo !=1
can be specified.

190 getStageResults

For testing a rate in one sample, a value thetaH® in (0, 1) has to be specified
for defining the null hypothesis HO: pi = thetaHe.

normalApproximation The type of computation of the p-values. Default is
FALSE for testing means (i.e., the t test is used) and TRUE for testing rates
and the hazard ratio. For testing rates, if normalApproximation = FALSE
is specified, the binomial test (one sample) or the exact test of Fisher (two
samples) is used for calculating the p-values. In the survival setting, normalApproximation
= FALSE has no effect.

equalVariances The type of t test. For testing means in two treatment groups,
either the t test assuming that the variances are equal or the t test without
assuming this, i.e., the test of Welch-Satterthwaite is calculated, default is
TRUE.

intersectionTest Defines the multiple test for the intersection hypotheses in
the closed system of hypotheses when testing multiple hypotheses. Five
options are available in multi-arm designs: "Dunnett”, "Bonferroni”,
"Simes"”, "Sidak", and "Hierarchical”, default is "Dunnett"”. Four op-
tions are available in population enrichment designs: "SpiessensDebois”
(one subset only), "Bonferroni”, "Simes"”, and "Sidak", defaultis "Simes".

varianceOption Defines the way to calculate the variance in multiple treat-
ment arms (> 2) or population enrichment designs for testing means. For
multiple arms, three options are available: "overallPooled”, "pairwisePooled”,
and "notPooled”, default is "overallPooled”. For enrichment designs,
the options are: "pooled”, "pooledFromFull” (one subset only), and "notPooled”,
default is "pooled”.

stratifiedAnalysis For enrichment designs, typically a stratified analysis
should be chosen. For testing means and rates, also a non-stratified analysis
based on overall data can be performed. For survival data, only a stratified
analysis is possible (see Brannath et al., 2009), default is TRUE.

stage The stage number (optional). Default: total number of existing stages in the data
input.

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

Details

Calculates and returns the stage results of the specified design and data input at the specified stage.

Value

Returns a StageResults object.

* names to obtain the field names,

* print() to print the object,

* summary () to display a summary of the object,

* plot() to plot the object,

* as.data.frame() to coerce the object to a data. frame,

* as.matrix() to coerce the object to amatrix.

getSystemlIdentifier 191

How to get help for generic functions

Click on the link of a generic in the list above to go directly to the help documentation of the rpact
specific implementation of the generic. Note that you can use the R function methods to get all
the methods of a generic and to identify the object specific name of it, e.g., use methods("plot")
to get all the methods for the plot generic. There you can find, e.g., plot.AnalysisResults and
obtain the specific help documentation linked above by typing ?plot.AnalysisResults.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalPower (), getConditionalRejectionProbabilities(), getFinalConfidencelInterval(),
getFinalPValue(), getRepeatedConfidencelIntervals(), getRepeatedPValues(), getTestActions()

Examples

Not run:
design <- getDesignInverseNormal()
dataRates <- getDataset(

nl = c(10, 10),
n2 = c(20, 20),
eventsl = c(8, 10),

events2 = c(10, 16))
getStageResults(design, dataRates)

End(Not run)

getSystemIdentifier Get System Identifier

Description

This function generates a unique system identifier based on the platform, R version, and rpact
package version.

Usage

getSystemIdentifier(date = NULL)

Arguments

date A character string or Date representing the date. Default is Sys.Date().

Value

A character string representing the unique system identifier.

Examples

Not run:
getSystemIdentifier()

End(Not run)

192 getTestActions

getTestActions Get Test Actions

Description

Returns test actions.

Usage

getTestActions(stageResults, ...)

Arguments

stageResults The results at given stage, obtained from getStageResults().

Only available for backward compatibility.

Details

Returns the test actions of the specified design and stage results at the specified stage.

Value

Returns a character vector of length kMax Returns a numeric vector of length kMax containing the
test actions of each stage.

See Also

Other analysis functions: getAnalysisResults(), getClosedCombinationTestResults(), getClosedConditionall
getConditionalPower (), getConditionalRejectionProbabilities(), getFinalConfidencelInterval(),
getFinalPValue(), getRepeatedConfidencelIntervals(), getRepeatedPValues(), getStageResults()

Examples

Not run:
design <- getDesignInverseNormal(kMax = 2)
data <- getDataset(

n = c(20, 30),
means = c(50, 51),
stDevs = c(130, 140)

)
getTestActions(getStageResults(design, datalnput = data))

End(Not run)

getWideFormat 193

getWideFormat Get Wide Format

Description

Returns the specified dataset as a data. frame in so-called wide format.

Usage

getWideFormat(datalnput)

Details

In the wide format (unstacked), the data are presented with each different data variable in a separate
column, i.e., the different groups are in separate columns.

Value

A data. frame will be returned.

See Also

getLongFormat () for returning the dataset as a data. frame in long format.

InstallationQualificationResult
Installation Qualification Result Object

Description

This object represents the structured result of a full or partial installation qualification test execu-
tion. It includes metadata about the executed test suite, paths used, summary statistics, and status
messages.

Format
An S3 object of class InstallationQualificationResult with the following elements:

completeUnitTestSetEnabled Logical indicating whether the full test set was enabled

testFileDirectory Directory containing test scripts

testFileTargetDirectory Directory to which tests are copied or linked

reportType Report type selected ("compact”, "detailed”, or "Rout”)

executionMode Execution mode ("default”, "downloadOnly”, "downloadAndRunTests"”, or "runTestsInTestFile
scope Scope of the qualification ("basic”, "devel”, "both"”, "internet”, or "all")

resultDir Directory where the result reports are stored

resultOuputFile Main output report filename

reportFileNames Vector of report files generated

194 kableParameterSet

minNumberOfExpectedTests Minimum number of expected tests
totalNumberOfTests Number of tests actually run
numberOfFailedTests Number of failed tests
numberOfSkippedTests Number of skipped tests

resultMessage Message summarizing the result

statusMessage Detailed status message

non

status Overall result status ("success”, "incomplete”, or "failed")

Details

The object is returned by the function testPackage and is of class InstallationQualificationResult.

See Also

testPackage

kableParameterSet Create output in Markdown

Description

The kable () function returns the output of the specified object formatted in Markdown.

Usage
S3 method for class 'ParameterSet'
kable(x, ...)

S3 method for class 'FieldSet'
kable(x, ..., enforceRowNames = TRUE, niceColumnNamesEnabled = TRUE)

S3 method for class 'data.frame'
kable(x, ...)

S3 method for class 'table'
kable(x, ...)

S3 method for class 'matrix'
kable(x, ...)

S3 method for class 'array'
kable(x, ...)

S3 method for class 'numeric'
kable(x, ...)

S3 method for class 'character'
kable(x, ...)

knit_print.FieldSet 195

S3 method for class 'logical'

kable(x, ...)
kable(x, ...)
Arguments
X A ParameterSet. If x does not inherit from class ParameterSet, knitr: :kable(x)
will be returned.
Other arguments (see kable).
Details

This function is deprecated and should no longer be used. Manual use of kable() for rpact result
objects is no longer needed, as the formatting and display will be handled automatically by the rpact
package. Please remove any manual kable() calls from your code to avoid redundancy and potential
issues. The results will be displayed in a consistent format automatically.

knit_print.FieldSet Print Field Set in Markdown Code Chunks

Description

The function knit_print.FieldSet is the default printing function for rpact result objects in knitr.
The chunk option render uses this function by default. To fall back to the normal printing behavior
set the chunk option render = normal_print. For more information see knit_print.

Usage
S3 method for class 'FieldSet'
knit_print(x, ...)

Arguments
X A FieldSet.

Other arguments (see knit_print).

Details

Generic function to print a field set in Markdown.

Markdown options
Useoptions("rpact.print.heading.base.number” = NUMBER) (where NUMBER is an integer value
>=-2) to specify the heading level.
NUMBER = 1 results in the heading prefix #, NUMBER = 2 results in ##, ...

The default is options(”rpact.print.heading.base.number” = -2), i.e., the top headings will
be written italic but are not explicit defined as header. options("rpact.print.heading.base.number”
= -1) means that all headings will be written bold but are not explicit defined as header.

Furthermore the following options can be set globally:

196 knit_print.ParameterSet

* rpact.auto.markdown.all: if TRUE, all output types will be rendered in Markdown format
automatically.

* rpact.auto.markdown.print: if TRUE, all print outputs will be rendered in Markdown for-
mat automatically.

* rpact.auto.markdown.summary: if TRUE, all summary outputs will be rendered in Mark-
down format automatically.

e rpact.auto.markdown.plot: if TRUE, all plot outputs will be rendered in Markdown format
automatically.

Example: options(”rpact.auto.markdown.plot” = FALSE) disables the automatic knitting of
plots inside Markdown documents.

knit_print.ParameterSet
Print Parameter Set in Markdown Code Chunks

Description

The function knit_print.ParameterSet is the default printing function for rpact result objects in
knitr. The chunk option render uses this function by default. To fall back to the normal printing
behavior set the chunk option render = normal_print. For more information see knit_print.

Usage
S3 method for class 'ParameterSet'
knit_print(x, ...)

Arguments
X A ParameterSet.

Other arguments (see knit_print).

Details

Generic function to print a parameter set in Markdown.

Markdown options
Use options("rpact.print.heading.base.number” = NUMBER) (where NUMBER is an integer value
>= -2) to specify the heading level.
NUMBER = 1 results in the heading prefix #, NUMBER = 2 results in ##, ...

The default is options(”rpact.print.heading.base.number” = -2), i.e., the top headings will
be written italic but are not explicit defined as header. options(”rpact.print.heading.base.number
= -1) means that all headings will be written bold but are not explicit defined as header.

n

Furthermore the following options can be set globally:

* rpact.auto.markdown.all: if TRUE, all output types will be rendered in Markdown format
automatically.

* rpact.auto.markdown.print: if TRUE, all print outputs will be rendered in Markdown for-
mat automatically.

knit_print.SummaryFactory 197

* rpact.auto.markdown.summary: if TRUE, all summary outputs will be rendered in Mark-
down format automatically.

* rpact.auto.markdown.plot: if TRUE, all plot outputs will be rendered in Markdown format
automatically.

Example: options(”rpact.auto.markdown.plot” = FALSE) disables the automatic knitting of
plots inside Markdown documents.

knit_print.SummaryFactory
Print Summary Factory in Markdown Code Chunks

Description

The function knit_print.SummaryFactory is the default printing function for rpact summary ob-
jects in knitr. The chunk option render uses this function by default. To fall back to the nor-
mal printing behavior set the chunk option render = normal_print. For more information see

knit_print.
Usage
S3 method for class 'SummaryFactory'
knit_print(x, ...)
Arguments
X A SummaryFactory.

Other arguments (see knit_print).

Details

Generic function to print a summary object in Markdown.

Markdown options

Use options("rpact.print.heading.base.number” = NUMBER) (where NUMBER is an integer value
>=-2) to specify the heading level.

NUMBER = 1 results in the heading prefix #, NUMBER = 2 results in ##, ...

The default is options("rpact.print.heading.base.number” = -2), i.e., the top headings will

be written italic but are not explicit defined as header. options("rpact.print.heading.base.number’

= -1) means that all headings will be written bold but are not explicit defined as header.
Furthermore the following options can be set globally:
* rpact.auto.markdown.all: if TRUE, all output types will be rendered in Markdown format
automatically.

e rpact.auto.markdown.print: if TRUE, all print outputs will be rendered in Markdown for-
mat automatically.

* rpact.auto.markdown.summary: if TRUE, all summary outputs will be rendered in Mark-
down format automatically.

198 MarkdownReporter

* rpact.auto.markdown.plot: if TRUE, all plot outputs will be rendered in Markdown format
automatically.

Example: options(”rpact.auto.markdown.plot” = FALSE) disables the automatic knitting of
plots inside Markdown documents.

length.TrialDesignSet Length of Trial Design Set

Description

Returns the number of designs in a TrialDesignSet.

Usage
S3 method for class 'TrialDesignSet'
length(x)

Arguments

X A TrialDesignSet object.

Details

Is helpful for iteration over all designs in a design set.

Value

Returns a non-negative integer of length 1 representing the number of design in the TrialDesignSet.

Examples
Not run:
designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
length(designSet)

End(Not run)

MarkdownReporter Markdown Reporter for Test Results

Description

This class defines a Markdown reporter for test results, inheriting from the R6: :Reporter class. It
logs test results in Markdown format and saves them to a file named test_results.md.

mvnprd 199

Fields

startTime The start time of the test run.
output A character vector to store the log output.
failures The number of test failures.

fileName The name of the current test file being processed.

Methods

initialize(...) Initializes the reporter, setting up the output and failures fields.

log(...) Logs messages to the output field.

start_reporter() Starts the reporter, logging the introduction and test results header.
start_file(file) Sets the current file name being processed.

getContext() Gets the context from the current file name.

add_result(context, test, result) Adds a test result to the log, marking it as passed or failed.
end_reporter() Ends the reporter, logging the summary and saving the output to a file.

finalize() Finalizes the reporter, displaying a message that the test results were saved.

mvnprd Original Algorithm AS 251: Normal Distribution

Description
Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, doi:10.2307/2347754.
Usage
mvnprd(..., A, B, BPD, EPS = 1e-06, INF, IERC = 1, HINC = @)

Arguments
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
A Upper limits of integration. Array of N dimensions
B Lower limits of integration. Array of N dimensions
BPD Values defining correlation structure. Array of N dimensions
EPS desired accuracy. Defaults to 1e-06
INF Determines where integration is done to infinity. Array of N dimensions. Valid
values for INF(I): 0 = c¢(B(I), Inf), 1 = c(-Inf, A(I)), 2 = c(B(I), A(I))
IERC error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used
HINC Interval width for Simpson’s rule. Value of zero caused a default .24 to be used
Details

This is a wrapper function for the original Fortran 77 code. For a multivariate normal vector with
correlation structure defined by RHO(I,J) = BPD(I) * BPD(J), computes the probability that the
vector falls in a rectangle in n-space with error less than eps.

https://doi.org/10.2307/2347754

200

mvstud

mvstud

Original Algorithm AS 251: Student T Distribution

Description

Calculates the Multivariate Normal Distribution with Product Correlation Structure published by
Charles Dunnett, Algorithm AS 251.1 Appl.Statist. (1989), Vol.38, No.3, doi:10.2307/2347754.

Usage
mvstud(..., NDF, A, B, BPD, D, EPS = 1e-06, INF, IERC = 1, HINC = 0)
Arguments
Ensures that all arguments (starting from the "...") are to be named and that a
warning will be displayed if unknown arguments are passed.
NDF Degrees of Freedom. Use O for infinite D.F.
A Upper limits of integration. Array of N dimensions
B Lower limits of integration. Array of N dimensions
BPD Values defining correlation structure. Array of N dimensions
D Non-Centrality Vector
EPS desired accuracy. Defaults to 1e-06
INF Determines where integration is done to infinity. Array of N dimensions. Valid
values for INF(I): 0 = ¢(B(I), Inf), 1 = c(-Inf, A(I)), 2 = c(B{), A(I))
IERC error control. If set to 1, strict error control based on fourth derivative is used. If
set to zero, error control based on halving intervals is used
HINC Interval width for Simpson’s rule. Value of zero caused a default .24 to be used
Details

This is a wrapper function for the original Fortran 77 code. For a multivariate normal vector with
correlation structure defined by RHO(I,J) = BPD(I) * BPD(J), computes the probability that the
vector falls in a rectangle in n-space with error less than eps.

Examples
Not run:
N <-3
RHO <- 0.5

B <- rep(-5.0, length = N)

A <- rep(5.0, length
INF <- rep(2, length

N)
N)

BPD <- rep(sqrt(RHO), length = N)

D <- rep(0.0, length
result <- mvstud(NDF

result

End(Not run)

N)
©, A=A, B=B, BPD = BPD, INF = INF, D = D)

https://doi.org/10.2307/2347754

names.AnalysisResults 201

names.AnalysisResults Names of a Analysis Results Object

Description

Function to get the names of an AnalysisResults object.

Usage
S3 method for class 'AnalysisResults'
names(x)

Arguments

X An AnalysisResults object created by getAnalysisResults().

Details

Returns the names of an analysis results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.FieldSet Names of a Field Set Object

Description

Function to get the names of a FieldSet object.

Usage
S3 method for class 'FieldSet'
names (x)

Arguments

X A FieldSet object.

Details

Returns the names of a field set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

202 names.StageResults

names.SimulationResults
Names of a Simulation Results Object

Description

Function to get the names of a SimulationResults object.

Usage
S3 method for class 'SimulationResults'
names(x)

Arguments

X A SimulationResults object created by getSimulationResults[MultiArm/Enrichment][Means.

Details

Returns the names of a simulation results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names.StageResults Names of a Stage Results Object

Description

Function to get the names of a StageResults object.

Usage
S3 method for class 'StageResults'
names(x)

Arguments

X A StageResults object.

Details

Returns the names of stage results that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

names. TrialDesignSet 203

names.TrialDesignSet Names of a Trial Design Set Object

Description

Function to get the names of a TrialDesignSet object.

Usage
S3 method for class 'TrialDesignSet'
names(x)

Arguments

X A TrialDesignSet object.

Details

Returns the names of a design set that can be accessed by the user.

Value

Returns a character vector containing the names of the AnalysisResults object.

Examples

Not run:
designSet <- getDesignSet(design = getDesignGroupSequential(), alpha = c(0.01, 0.05))
names(designSet)

End(Not run)

NumberOfSubjects Number Of Subjects

Description

Class for the definition of number of subjects results.

Details

NumberOfSubjects is a class for the definition of number of subjects results.

204 obtain

Fields

time The time values. Is a numeric vector.
accrualTime The assumed accrual time intervals for the study. Is a numeric vector.
accruallIntensity The absolute accrual intensities. Is a numeric vector of length kMax.

maxNumberOfSubjects The maximum number of subjects for power calculations. Is a numeric
vector.

numberOfSubjects In simulation results data set: The number of subjects under consideration
when the interim analysis takes place.

obtain Extract a single parameter

Description

Fetch a parameter from a parameter set.

Usage

obtain(x, ..., output)

S3 method for class 'ParameterSet'
obtain(x, ..., output = c("named”, "labeled"”, "value", "list"))

fetch(x, ..., output)

S3 method for class 'ParameterSet'

fetch(x, ..., output = c("named”, "labeled”, "value", "list"))
Arguments
X The ParameterSet object to fetch from.

One or more variables specified as:

* a literal variable name
* a positive integer, giving the position counting from the left

* a negative integer, giving the position counting from the right. The de-
fault returns the last parameter. This argument is taken by expression and
supports quasiquotation (you can unquote column names and column loca-
tions).

output A character defining the output type as follows:

* "named" (default) returns the named value if the value is a single value, the
value inside a named list otherwise
* "value" returns only the value itself

e "list" returns the value inside a named list

ParameterSet 205

Examples

Not run:
getDesignInverseNormal() |> fetch(kMax)
getDesignInverseNormal() |> fetch(kMax, output = "list")

End(Not run)

ParameterSet Parameter Set

Description

Basic class for parameter sets.

Details

The parameter set implements basic functions for a set of parameters.

param_accruallntensity
Parameter Description: Accrual Intensity

Description

Parameter Description: Accrual Intensity

Arguments

accruallntensity

A numeric vector of accrual intensities, default is the relative intensity @.1 (for
details see getAccrualTime()).

param_accrualIntensityType
Parameter Description: Accrual Intensity Type

Description

Parameter Description: Accrual Intensity Type

Arguments

accruallntensityType

A character value specifying the accrual intensity input type. Must be one of

"auto”, "absolute”, or "relative"”; default is "auto”, i.e., if all values are <
1 the type is "relative”, otherwise it is "absolute”.

206 param_activeArms

param_accruallntensity_counts
Parameter Description: accruallntensity for Counts

Description

Parameter Description: accruallntensity for Counts

Arguments
accruallntensity
If specified, the assumed accrual intensities for the study, there is no default.
param_accrualTime Parameter Description: Accrual Time
Description

Parameter Description: Accrual Time

Arguments

accrualTime The assumed accrual time intervals for the study, defaultis c(@, 12) (for details
see getAccrualTime()).

param_accrualTime_counts
Parameter Description: accrualTime for Counts

Description

Parameter Description: accrualTime for Counts

Arguments
accrualTime If specified, the assumed accrual time interval(s) for the study, there is no de-
fault.
param_activeArms Parameter Description: Active Arms
Description

Parameter Description: Active Arms

Arguments

activeArms The number of active treatment arms to be compared with control, default is 3.

param_adaptations 207

param_adaptations Parameter Description: Adaptations

Description

Parameter Description: Adaptations

Arguments

adaptations A logical vector of length kMax - 1 indicating whether or not an adaptation takes
place at interim k, default is rep (TRUE, kMax - 1).

param_allocationRatioPlanned
Parameter Description: Allocation Ratio Planned

Description

Parameter Description: Allocation Ratio Planned

Arguments

allocationRatioPlanned

The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. For multi-arm designs, it is the allocation ratio relating the active arm(s) to
the control. For simulating means and rates for a two treatment groups design, it
can be a vector of length kMax, the number of stages. It can be a vector of length
kMax, too, for multi-arm and enrichment designs. In these cases, a change of
allocating subjects to treatment groups over the stages can be assessed. Note
that internally allocationRatioPlanned is treated as a vector of length kMax,
not a scalar.

param_allocationRatioPlanned_sampleSize
Parameter Description: Allocation Ratio Planned With Optimum Op-
tion

Description

Parameter Description: Allocation Ratio Planned With Optimum Option

Arguments

allocationRatioPlanned
The planned allocation ratio n1 / n2 for a two treatment groups design, default
is 1. If allocationRatioPlanned = @ is entered, the optimal allocation ratio
yielding the smallest overall sample size is determined.

208 param_beta

param_alpha Parameter Description: Alpha

Description

Parameter Description: Alpha

Arguments
alpha The significance level alpha, default is @.025. Must be a positive numeric of
length 1.
param_alternative Parameter Description: Alternative
Description

Parameter Description: Alternative

Arguments

alternative The alternative hypothesis value for testing means. This can be a vector of as-
sumed alternatives, default is seq(@, 1, @.2) (power calculations) or seq(@. 2,
1, @.2) (sample size calculations).

param_alternative_simulation
Parameter Description: Alternative for Simulation

Description

Parameter Description: Alternative for Simulation

Arguments
alternative The alternative hypothesis value for testing means under which the data is sim-
ulated. This can be a vector of assumed alternatives, default is seq(0, 1, 0.2).
param_beta Parameter Description: Beta
Description

Parameter Description: Beta

Arguments

beta Type Il error rate, necessary for providing sample size calculations (e.g., getSampleSizeMeans()),
beta spending function designs, or optimum designs, default is @.20. Must be a
positive numeric of length 1.

param_bindingFutility 209

param_bindingFutility Parameter Description: Binding Futility

Description

Parameter Description: Binding Futility

Arguments

bindingFutility
Logical. If bindingFutility = TRUE is specified the calculation of the critical
values is affected by the futility bounds and the futility threshold is binding in
the sense that the study must be stopped if the futility condition was reached
(default is FALSE).

param_calcEventsFunction
Parameter Description: Calculate Events Function

Description

Parameter Description: Calculate Events Function

Arguments

calcEventsFunction
Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, event number recalculation is performed with
conditional power and specified minNumberOfEventsPerStage and maxNumberOfEventsPerStage
(see details and examples).

param_calcSubjectsFunction
Parameter Description: Calculate Subjects Function

Description

Parameter Description: Calculate Subjects Function

Arguments

calcSubjectsFunction
Optionally, a function can be entered that defines the way of performing the sam-
ple size recalculation. By default, sample size recalculation is performed with
conditional power and specified minNumberOfSubjectsPerStage and maxNumberOfSubjectsPerSt
(see details and examples).

210

param_datalnput

param_conditionalPower

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

The conditional power for the subsequent stage under which the sample size

recalculation is performed. Must be a positive numeric of length 1.

param_conditionalPowerSimulation

Parameter Description: Conditional Power

Description

Parameter Description: Conditional Power

Arguments

conditionalPower

If conditionalPower together with minNumberOfSubjectsPerStage and maxNumberOfSubjectsPe
(or minNumberOfEventsPerStage and maxNumberOfEventsPerStage for sur-

vival designs) is specified, a sample size recalculation based on the specified

conditional power is performed. It is defined as the power for the subsequent

stage given the current data. By default, the conditional power will be calcu-

lated under the observed effect size. Optionally, you can also specify thetaH1

and stDevH1 (for simulating means), piTH1 and pi2H1 (for simulating rates), or

thetaH1 (for simulating hazard ratios) as parameters under which it is calculated

and the sample size recalculation is performed.

param_datalnput

Parameter Description: Data Input

Description

Parameter Description: Data Input

Arguments

datalnput

The summary data used for calculating the test results. This is either an element
of DatasetMeans, of DatasetRates, or of DatasetSurvival and should be
created with the function getDataset (). For more information see getDataset ().

param_design 211

param_design Parameter Description: Design

Description

Parameter Description: Design

Arguments

design The trial design.

param_design_with_default
Parameter Description: Design with Default

Description

Parameter Description: Design with Default

Arguments
design The trial design. If no trial design is specified, a fixed sample size design is used.
In this case, Type I error rate alpha, Type II error rate beta, twoSidedPower,
and sided can be directly entered as argument where necessary.
param_digits Parameter Description: Digits
Description

Parameter Description: Digits

Arguments

digits Defines how many digits are to be used for numeric values. Must be a positive
integer of length 1.

param_directionUpper Parameter Description: Direction Upper

Description

Parameter Description: Direction Upper

Arguments

directionUpper Logical. Specifies the direction of the alternative, only applicable for one-sided
testing; default is TRUE which means that larger values of the test statistics yield
smaller p-values.

212 param_dropoutTime

param_doselLevels Parameter Description: Dose Levels

Description

Parameter Description: Dose Levels

Arguments
doselLevels The dose levels for the dose response relationship. If not specified, these dose
levelsare 1,...,activeArms.
param_dropoutRate1 Parameter Description: Dropout Rate (1)
Description

Parameter Description: Dropout Rate (1)

Arguments
dropoutRatel The assumed drop-out rate in the treatment group, default is @.
param_dropoutRate2 Parameter Description: Dropout Rate (2)
Description

Parameter Description: Dropout Rate (2)

Arguments

dropoutRate2 The assumed drop-out rate in the control group, default is .

param_dropoutTime Parameter Description: Dropout Time

Description

Parameter Description: Dropout Time

Arguments

dropoutTime The assumed time for drop-out rates in the control and the treatment group,
default is 12.

param_effectList 213

param_effectList Parameter Description: Effect List

Description

Parameter Description: Effect List

Arguments
effectlList List of subsets, prevalences, and effect sizes with columns and number of rows
reflecting the different situations to consider (see examples).
param_effectMatrix Parameter Description: Effect Matrix
Description

Parameter Description: Effect Matrix

Arguments

effectMatrix Matrix of effect sizes with activeArms columns and number of rows reflecting
the different situations to consider.

param_effectMeasure Parameter Description: Effect Measure

Description

Parameter Description: Effect Measure

Arguments

effectMeasure Criterion for treatment arm/population selection, either based on test statistic
("testStatistic") or effect estimate (difference for means and rates or ratio
for survival) ("effectEstimate"”), default is "effectEstimate”.

param_epsilonValue Parameter Description: Epsilon Value

Description

Parameter Description: Epsilon Value

Arguments

epsilonValue For typeOfSelection = "epsilon” (select treatment arm / population not worse
than epsilon compared to the best), the parameter epsilonValue has to be spec-
ified. Must be a numeric of length 1.

214 param_gED50

param_eventTime Parameter Description: Event Time

Description

Parameter Description: Event Time

Arguments

eventTime The assumed time under which the event rates are calculated, default is 12.

param_fixedExposureTime_counts
Parameter Description: fixedExposureTime for Counts

Description

Parameter Description: fixedExposureTime for Counts

Arguments
fixedExposureTime
If specified, the fixed time of exposure per subject for count data, there is no
default.

param_followUpTime_counts
Parameter Description: followUpTime for Counts

Description

Parameter Description: followUpTime for Counts

Arguments

followUpTime If specified, the assumed (additional) follow-up time for the study, there is no
default. The total study duration is accrualTime + followUpTime.

param_gED50 Parameter Description: G ED50

Description

Parameter Description: G ED50

Arguments

gED50 If typeOfShape = "sigmoidEmax" is selected, gED50 has to be entered to spec-
ify the ED50 of the sigmoid Emax model.

param_grid 215

param_grid Parameter Description: Grid (Output Specification Of Multiple Plots)

Description

Parameter Description: Grid (Output Specification Of Multiple Plots)

Arguments
grid An integer value specifying the output of multiple plots. By default (1) a list
of ggplot objects will be returned. If a grid value > 1 was specified, a grid
plot will be returned if the number of plots is <= specified grid value; a list of
ggplot objects will be returned otherwise. If grid = @ is specified, all plots will
be created using print command and a list of ggplot objects will be returned
invisible. Note that one of the following packages must be installed to create a
grid plot: *ggpubr’, *gridExtra’, or ’cowplot’.
param_groups Parameter Description: Number Of Treatment Groups
Description

Parameter Description: Number Of Treatment Groups

Arguments
groups The number of treatment groups (1 or 2), default is 2.
param_hazardRatio Parameter Description: Hazard Ratio
Description

Parameter Description: Hazard Ratio

Arguments

hazardRatio The vector of hazard ratios under consideration. If the event or hazard rates in
both treatment groups are defined, the hazard ratio needs not to be specified as
it is calculated, there is no default. Must be a positive numeric of length 1.

216 param_informationRates

param_includeAllParameters
Parameter Description: Include All Parameters

Description

Parameter Description: Include All Parameters

Arguments

includeAllParameters
Logical. If TRUE, all available parameters will be included in the data frame; a
meaningful parameter selection otherwise, default is FALSE.

param_informationEpsilon
Parameter Description: Information Epsilon

Description

Parameter Description: Information Epsilon

Arguments

informationEpsilon

Positive integer value specifying the absolute information epsilon, which de-
fines the maximum distance from the observed information to the maximum
information that causes the final analysis. Updates at the final analysis in case
the observed information at the final analysis is smaller ("under-running") than
the planned maximum information maxInformation, defaultis 0. Alternatively,
a floating-point number > 0 and < 1 can be specified to define a relative infor-
mation epsilon.

param_informationRates
Parameter Description: Information Rates

Description

Parameter Description: Information Rates

Arguments

informationRates
The information rates t_1, ..., t_kMax (that must be fixed prior to the trial), de-
fault is (1:kMax) / kMax. For the weighted inverse normal design, the weights
are derived through w_1 = sqrt(t_1), and w_k = sqrt(t_k - t_(k-1)). For the
weighted Fisher’s combination test, the weights (scales) are w_k = sqrt((t_k -
t_(k-1)) / t_1) (see the documentation).

param_intersectionTest_Enrichment 217

param_intersectionTest_Enrichment
Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments

intersectionTest
Defines the multiple test for the intersection hypotheses in the closed system of
hypotheses. Four options are available in enrichment designs: "SpiessensDebois”,
"Bonferroni”, "Simes”, and "Sidak"”, default is "Simes".

param_intersectionTest_MultiArm
Parameter Description: Intersection Test

Description

Parameter Description: Intersection Test

Arguments
intersectionTest
Defines the multiple test for the intersection hypotheses in the closed system
of hypotheses. Five options are available in multi-arm designs: "Dunnett”,
"Bonferroni”, "Simes”, "Sidak", and "Hierarchical”, defaultis "Dunnett”.
param_kappa Parameter Description: Kappa
Description

Parameter Description: Kappa

Arguments

kappa A numeric value > 0. A kappa !=1 will be used for the specification of the shape
of the Weibull distribution. Default is 1, i.e., the exponential survival distribu-
tion is used instead of the Weibull distribution. Note that the Weibull distribu-
tion cannot be used for the piecewise definition of the survival time distribution,
i.e., only piecewiselambda (as a single value) and kappa can be specified. This
function is equivalent to pweibull (t, shape = kappa, scale =1 / lambda) of
the stats package, i.e., the scale parameter is 1 / 'hazard rate’.

For example, getPiecewiseExponentialDistribution(time = 130, piecewiselLambda

=0.01, kappa =4.2) and pweibull(q =130, shape=4.2, scale=1/0.01)
provide the same result.

218 param_lambda2

param_kMax Parameter Description: Maximum Number of Stages

Description

Parameter Description: Maximum Number of Stages

Arguments
kMax The maximum number of stages K. Must be a positive integer of length 1 (default
value is 3). The maximum selectable kMax is 2@ for group sequential or inverse
normal and 6 for Fisher combination test designs.
param_lambda1 Parameter Description: Lambda (1)
Description

Parameter Description: Lambda (1)

Arguments

lambda1l The assumed hazard rate in the treatment group, there is no default. lambda1l
can also be used to define piecewise exponentially distributed survival times (see
details). Must be a positive numeric of length 1.

param_lambdal_counts Parameter Description: lambda (1) for Counts

Description

Parameter Description: lambda (1) for Counts

Arguments
lambda1l A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the active treatment group, there is no default.
param_lambda?2 Parameter Description: Lambda (2)
Description

Parameter Description: Lambda (2)

Arguments

lambda2 The assumed hazard rate in the reference group, there is no default. lambda2
can also be used to define piecewise exponentially distributed survival times
(see details). Must be a positive numeric of length 1.

param_lambdaZ2_counts 219

param_lambda2_counts Parameter Description: lambda (2) for Counts

Description

Parameter Description: lambda (2) for Counts

Arguments

lambda2 A numeric value that represents the assumed rate of a homogeneous Poisson
process in the control group, there is no default.

param_lambda_counts Parameter Description: lambda for Counts

Description

Parameter Description: lambda for Counts

Arguments

lambda A numeric value or vector that represents the assumed rate of a homogeneous
Poisson process in the pooled treatment groups, there is no default.

param_legendPosition Parameter Description: Legend Position On Plots

Description

Parameter Description: Legend Position On Plots

Arguments

legendPosition The position of the legend. By default (NA_integer_) the algorithm tries to find
a suitable position. Choose one of the following values to specify the position
manually:
* -1: no legend will be shown
* NA: the algorithm tries to find a suitable position
* 0: legend position outside plot
: legend position left top
: legend position left center
: legend position left bottom
: legend position right top
: legend position right center

.
o 0w NN =2

: legend position right bottom

220 param_maxNumberOflterations

param_maxInformation Parameter Description: Maximum Information

Description

Parameter Description: Maximum Information

Arguments

maxInformation Positive value specifying the maximum information.

param_maxNumberOfEventsPerStage
Parameter Description: Max Number Of Events Per Stage

Description

Parameter Description: Max Number Of Events Per Stage

Arguments

maxNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor maxNumberOfEventsPerStage with length kMax determines the maximum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

param_maxNumberOfIterations
Parameter Description: Maximum Number Of Iterations

Description

Parameter Description: Maximum Number Of Iterations

Arguments

maxNumberOfIterations

The number of simulation iterations, default is 1000. Must be a positive integer
of length 1.

param_maxNumberOfSubjects 221

param_maxNumberOfSubjects
Parameter Description: Maximum Number Of Subjects

Description

Parameter Description: Maximum Number Of Subjects

Arguments

maxNumberOfSubjects
maxNumberOfSubjects > @ needs to be specified for power calculations or cal-
culation of necessary follow-up (count data). For two treatment arms, it is the
maximum number of subjects for both treatment arms.

param_maxNumberOfSubjectsPerStage
Parameter Description: Maximum Number Of Subjects Per Stage

Description

Parameter Description: Maximum Number Of Subjects Per Stage

Arguments

maxNumberOfSubjectsPerStage
When performing a data driven sample size recalculation, the numeric vector
maxNumberOfSubjectsPerStage with length kMax determines the maximum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both
treatment arms. For multi-arm designs maxNumberOfSubjectsPerStage refers
to the maximum number of subjects per selected active arm.

param_maxNumberOfSubjects_survival
Parameter Description: Maximum Number Of Subjects For Survival
Endpoint

Description

Parameter Description: Maximum Number Of Subjects For Survival Endpoint

Arguments

maxNumberOfSubjects
maxNumberOfSubjects > @ needs to be specified. If accrual time and accrual
intensity are specified, this will be calculated. Must be a positive integer of
length 1.

222 param_minNumberOfEventsPerStage

param_median1 Parameter Description: Median (1)

Description

Parameter Description: Median (1)

Arguments
mediani The assumed median survival time in the treatment group, there is no default.
param_median2 Parameter Description: Median (2)
Description

Parameter Description: Median (2)

Arguments

median2 The assumed median survival time in the reference group, there is no default.
Must be a positive numeric of length 1.

param_minNumberOfEventsPerStage
Parameter Description: Min Number Of Events Per Stage

Description

Parameter Description: Min Number Of Events Per Stage

Arguments

minNumberOfEventsPerStage
When performing a data driven sample size recalculation, the numeric vec-
tor minNumberOfEventsPerStage with length kMax determines the minimum
number of events per stage (i.e., not cumulated), the first element is not taken
into account.

param_minNumberOfSubjectsPerStage 223

param_minNumberOfSubjectsPerStage

Parameter Description: Minimum Number Of Subjects Per Stage

Description

Parameter Description: Minimum Number Of Subjects Per Stage

Arguments

minNumberOfSubjectsPerStage

When performing a data driven sample size recalculation, the numeric vector
minNumberOfSubjectsPerStage with length kMax determines the minimum
number of subjects per stage (i.e., not cumulated), the first element is not taken
into account. For two treatment arms, it is the number of subjects for both treat-
ment arms. For multi-arm designs minNumberOfSubjectsPerStage refers to
the minimum number of subjects per selected active arm.

param_niceColumnNamesEnabled

Parameter Description: Nice Column Names Enabled

Description

Parameter Description: Nice Column Names Enabled

Arguments

niceColumnNamesEnabled

Logical. If TRUE, nice looking column names will be used; syntactic names
(variable names) otherwise (see make.names).

param_nMax

Parameter Description: N_max

Description

Parameter Description: N_max

Arguments

nMax

The maximum sample size. Must be a positive integer of length 1.

224 param_overdispersion_counts

param_normalApproximation
Parameter Description: Normal Approximation

Description

Parameter Description: Normal Approximation

Arguments
normalApproximation
The type of computation of the p-values. Default is FALSE for testing means (i.e.,
the t test is used) and TRUE for testing rates and the hazard ratio. For testing rates,
if normalApproximation = FALSE is specified, the binomial test (one sample)
or the exact test of Fisher (two samples) is used for calculating the p-values. In
the survival setting normalApproximation = FALSE has no effect.
param_nPlanned Parameter Description: N Planned
Description

Parameter Description: N Planned

Arguments

nPlanned The additional (i.e., "new" and not cumulative) sample size planned for each of
the subsequent stages. The argument must be a vector with length equal to the
number of remaining stages and contain the combined sample size from both
treatment groups if two groups are considered. For survival outcomes, it should
contain the planned number of additional events. For multi-arm designs, it is
the per-comparison (combined) sample size. For enrichment designs, it is the
(combined) sample size for the considered sub-population.

param_overdispersion_counts
Parameter Description: overdispersion for Counts

Description

Parameter Description: overdispersion for Counts

Arguments

overdispersion A numeric value that represents the assumed overdispersion of the negative bi-
nomial distribution, default is 0.

param_palette 225

param_palette Parameter Description: Palette

Description

Parameter Description: Palette

Arguments
palette The palette, default is "Set1".
param_pil_rates Parameter Description: Pi (1) for Rates
Description

Parameter Description: Pi (1) for Rates

Arguments
pil A numeric value or vector that represents the assumed probability in the ac-
tive treatment group if two treatment groups are considered, or the alternative
probability for a one treatment group design, default is seq(@.2, 0.5, 0.1)
(power calculations and simulations) or seq(@.4, .6, 0.1) (sample size cal-
culations).
param_pil_survival Parameter Description: Pi (1) for Survival Data
Description

Parameter Description: Pi (1) for Survival Data

Arguments
pil A numeric value or vector that represents the assumed event rate in the treatment
group, default is seq(@.2, 0.5, @.1) (power calculations and simulations) or
seq(@.4, 0.6, 0.1) (sample size calculations).
param_pi2_rates Parameter Description: Pi(2) for Rates
Description

Parameter Description: Pi (2) for Rates

Arguments

pi2 A numeric value that represents the assumed probability in the reference group
if two treatment groups are considered, default is @. 2.

226 param_plannedCalendarTime

param_pi2_survival Parameter Description: Pi (2) for Survival Data

Description

Parameter Description: Pi (2) for Survival Data

Arguments

pi2 A numeric value that represents the assumed event rate in the control group,
defaultis . 2.

param_piecewiseSurvivalTime
Parameter Description: Piecewise Survival Time

Description

Parameter Description: Piecewise Survival Time

Arguments

piecewiseSurvivalTime
A vector that specifies the time intervals for the piecewise definition of the ex-
ponential survival time cumulative distribution function
(for details see getPiecewiseSurvivalTime()).

param_plannedCalendarTime
Parameter Description: Planned Calendar Time

Description

Parameter Description: Planned Calendar Time

Arguments

plannedCalendarTime
For simulating count data, the time points where an analysis is planned to be
performed. Should be a vector of length kMax

param_plannedEvents 227

param_plannedEvents Parameter Description: Planned Events

Description

Parameter Description: Planned Events

Arguments

plannedEvents plannedEvents is a numeric vector of length kMax (the number of stages of the
design) that determines the number of cumulated (overall) events in survival de-
signs when the interim stages are planned. For two treatment arms, it is the num-
ber of events for both treatment arms. For multi-arm designs, plannedEvents
refers to the overall number of events for the selected arms plus control.

param_plannedSubjects Parameter Description: Planned Subjects

Description

Parameter Description: Planned Subjects

Arguments

plannedSubjects
plannedSubjects is a numeric vector of length kMax (the number of stages of

the design) that determines the number of cumulated (overall) subjects when the
interim stages are planned. For two treatment arms, it is the number of subjects
for both treatment arms. For multi-arm designs, plannedSubjects refers to the
number of subjects per selected active arm.

param_plotPointsEnabled
Parameter Description: Plot Points Enabled

Description

Parameter Description: Plot Points Enabled

Arguments

plotPointsEnabled
Logical. If TRUE, additional points will be plotted.

228 param_seed

param_plotSettings Parameter Description: Plot Settings

Description

Parameter Description: Plot Settings

Arguments

plotSettings An object of class PlotSettings created by getPlotSettings().

param_populations Parameter Description: Populations

Description

Parameter Description: Populations

Arguments
populations The number of populations in a two-sample comparison, default is 3.
param_rValue Parameter Description: R Value
Description

Parameter Description: R Value

Arguments
rvValue For typeOfSelection = "rbest” (select the rValue best treatment arms / pop-
ulations), the parameter rValue has to be specified.
param_seed Parameter Description: Seed
Description

Parameter Description: Seed

Arguments

seed The seed to reproduce the simulation, default is a random seed.

param_selectArmsFunction 229

param_selectArmsFunction

Parameter Description: Select Arms Function

Description

Parameter Description: Select Arms Function

Arguments

selectArmsFunction

Optionally, a function can be entered that defines the way of how treatment arms

are selected. This function is allowed to depend on effectVector with length

activeArms, stage, conditionalPower, conditionalCriticalValue, plannedSubjects/planne
allocationRatioPlanned, selectedArms, thetaH1 (for means and survival),

stDevH1 (for means), overallEffects, and for rates additionally: piTreatmentsH1,

piControlH1, overallRates, and overallRatesControl (see examples).

param_selectPopulationsFunction

Parameter Description: Select Populations Function

Description

Parameter Description: Select Populations Function

Arguments

selectPopulationsFunction

Optionally, a function can be entered that defines the way of how populations

are selected. This function is allowed to depend on effectVector with length

populations stage, conditionalPower, conditionalCriticalValue, plannedSubjects/plann
allocationRatioPlanned, selectedPopulations, thetaH1 (for means and

survival), stDevH1 (for means), overallEffects, and for rates additionally:

piTreatmentsH1, piControlH1, overallRates, and overallRatesControl

(see examples).

param_showSource

Parameter Description: Show Source

Description

Parameter Description: Show Source

230 param_slope

Arguments

showSource Logical. If TRUE, the parameter names of the object will be printed which were
used to create the plot; that may be, e.g., useful to check the values or to create
own plots with the base R plot function. Alternatively showSource can be
defined as one of the following character values:
* "commands": returns a character vector with plot commands
e "axes": returns a list with the axes definitions
e "test": all plot commands will be validated with eval(parse()) and re-
turned as character vector (function does not stop if an error occurs)
* "validate”: all plot commands will be validated with eval (parse()) and
returned as character vector (function stops if an error occurs)

Note: no plot object will be returned if showSource is a character.

param_showStatistics Parameter Description: Show Statistics

Description

Parameter Description: Show Statistics

Arguments

showStatistics Logical. If TRUE, summary statistics of the simulated data are displayed for the
print command, otherwise the output is suppressed, default is FALSE.

param_sided Parameter Description: Sided

Description

Parameter Description: Sided

Arguments
sided Is the alternative one-sided (1) or two-sided (2), default is 1. Must be a positive
integer of length 1.
param_slope Parameter Description: Slope
Description

Parameter Description: Slope

Arguments

slope If typeOfShape = "sigmoidEmax" is selected, slope can be entered to specify
the slope of the sigmoid Emax model, default is 1.

param_stage 231

param_stage Parameter Description: Stage

Description

Parameter Description: Stage

Arguments
stage The stage number (optional). Default: total number of existing stages in the data
input.
param_stageResults Parameter Description: Stage Results
Description

Parameter Description: Stage Results

Arguments

stageResults The results at given stage, obtained from getStageResults().

param_stDev Parameter Description: Standard Deviation

Description

Parameter Description: Standard Deviation

Arguments
stDev The standard deviation under which the sample size or power calculation is per-
formed, default is 1. For two-armed trials, it is allowed to specify the standard
deviations separately, i.e., as vector with two elements. If meanRatio = TRUE is
specified, stDev defines the coefficient of variation sigma / mu2.
param_stDevH1 Parameter Description: Standard Deviation Under Alternative
Description

Parameter Description: Standard Deviation Under Alternative

Arguments

stDevH1 If specified, the value of the standard deviation under which the conditional
power or sample size recalculation calculation is performed, default is the value
of stDev.

232 param_successCriterion

param_stDevSimulation Parameter Description: Standard Deviation for Simulation

Description

Parameter Description: Standard Deviation for Simulation

Arguments

stDev The standard deviation under which the data is simulated, default is 1. For two-
armed trials, it is allowed to specify the standard deviations separately, i.e., as
vector with two elements. If meanRatio = TRUE is specified, stDev defines the
coefficient of variation sigma / mu2.

param_stratifiedAnalysis
Parameter Descrip